Advertisement

Easy-plane QED3’s in the large Nf limit

  • Sergio Benvenuti
  • Hrachya KhachatryanEmail author
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

We consider Quantum Electrodynamics in 2 + 1 dimensions with Nf fermionic or bosonic flavors, allowing for interactions that respect the global symmetry U(Nf/2)2. There are four bosonic and four fermionic fixed points, which we analyze using the large Nf expansion. We systematically compute, at order O(1/Nf), the scaling dimensions of quadratic and quartic mesonic operators.

We also consider Quantum Electrodynamics with minimal supersymmetry. In this case the large Nf scaling dimensions, extrapolated at Nf = 2, agree quite well with the scaling dimensions of a dual supersymmetric Gross-Neveu-Yukawa model. This provides a quantitative check of the conjectured duality.

Keywords

1/N Expansion Conformal Field Theory Duality in Gauge Field Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Benvenuti and H. Khachatryan, QEDs in 2 + 1 dimensions: complex fixed points and dualities, arXiv:1812.01544 [INSPIRE].
  2. [2]
    T. Senthil, Deconfined quantum critical points, Science 303 (2004) 1490 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M.P.A. Fisher, Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev. B 70 (2004) 144407 [cond-mat/0312617].
  4. [4]
    O.I. Motrunich and A. Vishwanath, Emergent photons and new transitions in the O(3) σ-model with hedgehog suppression, Phys. Rev. B 70 (2004) 075104 [cond-mat/0311222] [INSPIRE].
  5. [5]
    V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions and complex CFTs, JHEP 10 (2018) 108 [arXiv:1807.11512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K.-I. Kubota and H. Terao, Dynamical symmetry breaking in QED 3 from the Wilson RG point of view, Prog. Theor. Phys. 105 (2001) 809 [hep-ph/0101073] [INSPIRE].
  7. [7]
    K. Kaveh and I.F. Herbut, Chiral symmetry breaking in QED 3 in presence of irrelevant interactions: a renormalization group study, Phys. Rev. B 71 (2005) 184519 [cond-mat/0411594] [INSPIRE].
  8. [8]
    I.F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev. D 94 (2016) 025036 [arXiv:1605.09482] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    V.P. Gusynin and P.K. Pyatkovskiy, Critical number of fermions in three-dimensional QED, Phys. Rev. D 94 (2016) 125009 [arXiv:1607.08582] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A.V. Kotikov and S. Teber, Addendum tocritical behaviour of (2 + 1)-dimensional QED: 1/N f -corrections in an arbitrary non-local gauge”, Phys. Rev. D 99 (2019) 059902 [arXiv:1902.03790] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED d , F-theorem and the ϵ expansion, J. Phys. A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].ADSzbMATHGoogle Scholar
  12. [12]
    R.D. Pisarski, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev. D 29 (1984) 2423 [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum electrodynamics in d = 3 from the ϵ expansion, Phys. Rev. Lett. 116 (2016) 131601 [arXiv:1508.06278] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Di Pietro and E. Stamou, Scaling dimensions in QED 3 from the ϵ-expansion, JHEP 12 (2017) 054 [arXiv:1708.03740] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    Z. Li, Solving QED 3 with conformal bootstrap, arXiv:1812.09281 [INSPIRE].
  16. [16]
    J. March-Russell, On the possibility of second order phase transitions in spontaneously broken gauge theories, Phys. Lett. B 296 (1992) 364 [hep-ph/9208215] [INSPIRE].
  17. [17]
    A. Nahum, J.T. Chalker, P. Serna, M. Ortuño and A.M. Somoza, Deconfined quantum criticality, scaling violations and classical loop models, Phys. Rev. X 5 (2015) 041048 [arXiv:1506.06798] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    A. Nahum, P. Serna, J.T. Chalker, M. Ortuño and A.M. Somoza, Emergent SO(5) symmetry at the Néel to valence-bond-solid transition, Phys. Rev. Lett. 115 (2015) 267203 [arXiv:1508.06668] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition, Phys. Rev. B 99 (2019) 195110 [arXiv:1805.03759] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F.S. Nogueira and A. Sudbø, Deconfined quantum criticality and conformal phase transition in two-dimensional antiferromagnets, EPL 104 (2013) 56004 [arXiv:1304.4938] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  24. [24]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large N Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Karch, B. Robinson and D. Tong, More Abelian dualities in 2 + 1 dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2 + 1)-dimensional Majorana fermions, Phys. Rev. B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP 02 (2018) 068 [arXiv:1712.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Jensen, A master bosonization duality, JHEP 01 (2018) 031 [arXiv:1712.04933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, JHEP 01 (2018) 109 [arXiv:1706.08755] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases of adjoint QCD 3 and dualities, SciPost Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    V. Bashmakov, J. Gomis, Z. Komargodski and A. Sharon, Phases of N = 1 theories in 2 + 1 dimensions, JHEP 07 (2018) 123 [arXiv:1802.10130] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    F. Benini and S. Benvenuti, N = 1 dualities in 2 + 1 dimensions, JHEP 11 (2018) 197 [arXiv:1803.01784] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C. Choi, M. Roček and A. Sharon, Dualities and phases of 3D N = 1 SQCD, JHEP 10 (2018) 105 [arXiv:1808.02184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    C. Choi, D. Delmastro, J. Gomis and Z. Komargodski, Dynamics of QCD 3 with rank-two quarks and duality, arXiv:1810.07720 [INSPIRE].
  42. [42]
    T. Senthil, D.T. Son, C. Wang and C. Xu, Duality between (2 + 1)d quantum critical points, arXiv:1810.05174 [INSPIRE].
  43. [43]
    J. Lou, A.W. Sandvik and N. Kawashima, Antiferromagnetic to valence-bond-soild transitions in two-dimensional SU(N) Heisenberg models with multi-spin interactions, Phys. Rev. B 80 (2009) 180414 [arXiv:0908.0740].ADSCrossRefGoogle Scholar
  44. [44]
    R.K. Kaul and A.W. Sandvik, Lattice model for the SU(N) Néel to valence-bond solid quantum phase transition at large N, Phys. Rev. Lett. 108 (2012) 137201 [arXiv:1110.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. D’Emidio and R.K. Kaul, New easy-plane CP N − 1 fixed points, Phys. Rev. Lett. 118 (2017) 187202 [arXiv:1610.07702] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    X.-F. Zhang, Y.-C. He, S. Eggert, R. Moessner and F. Pollmann, Continuous easy-plane deconfined phase transition on the Kagome lattice, Phys. Rev. Lett. 120 (2018) 115702 [arXiv:1706.05414] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Karthik and R. Narayanan, Scale-invariance of parity-invariant three-dimensional QED, Phys. Rev. D 94 (2016) 065026 [arXiv:1606.04109] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    Y. Nakayama and T. Ohtsuki, Conformal bootstrap dashing hopes of emergent symmetry, Phys. Rev. Lett. 117 (2016) 131601 [arXiv:1602.07295] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Simmons-Duffin, unpublished.Google Scholar
  50. [50]
    L. Iliesiu, The Néel-VBA quantum phase transition and the conformal bootstrap, talk at Simons Center for Geometry and Physics, 5 November 2018.Google Scholar
  51. [51]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys. 91 (2019) 15002 [arXiv:1805.04405] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3D conformal gauge theories with many flavors, JHEP 05 (2012) 036 [arXiv:1112.5342] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    S.S. Pufu, Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics, Phys. Rev. D 89 (2014) 065016 [arXiv:1303.6125] [INSPIRE].ADSGoogle Scholar
  54. [54]
    E. Dyer, M. Mezei, S.S. Pufu and S. Sachdev, Scaling dimensions of monopole operators in the \( C{P^{N_b-}}^1 \) theory in 2 + 1 dimensions, JHEP 06 (2015) 037 [Erratum ibid. 03 (2016) 111] [arXiv:1504.00368] [INSPIRE].
  55. [55]
    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C J and C T in the Gross-Neveu and O(N) models, J. Phys. A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].zbMATHGoogle Scholar
  56. [56]
    S. Giombi, G. Tarnopolsky and I.R. Klebanov, On C J and C T in conformal QED, JHEP 08 (2016) 156 [arXiv:1602.01076] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    S.M. Chester, L.V. Iliesiu, M. Mezei and S.S. Pufu, Monopole operators in U(1) Chern-Simons-matter theories, JHEP 05 (2018) 157 [arXiv:1710.00654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    G. Murthy and S. Sachdev, Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CP N − 1 model, Nucl. Phys. B 344 (1990) 557 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    V. Borokhov, A. Kapustin and X.-K. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP 11 (2016) 068 [arXiv:1601.01310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    A.N. Manashov and E.D. Skvortsov, Higher-spin currents in the Gross-Neveu model at 1/N 2, JHEP 01 (2017) 132 [arXiv:1610.06938] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    A.N. Manashov, E.D. Skvortsov and M. Strohmaier, Higher spin currents in the critical O(N) vector model at 1/N 2, JHEP 08 (2017) 106 [arXiv:1706.09256] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    A.N. Manashov and M. Strohmaier, Correction exponents in the Gross-Neveu-Yukawa model at 1/N 2, Eur. Phys. J. C 78 (2018) 454 [arXiv:1711.02493] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.A. Gracey, Large N f quantum field theory, Int. J. Mod. Phys. A 33 (2019) 1830032 [arXiv:1812.05368] [INSPIRE].ADSzbMATHGoogle Scholar
  65. [65]
    D. Gaiotto, Z. Komargodski and J. Wu, Curious aspects of three-dimensional N = 1 SCFTs, JHEP 08 (2018) 004 [arXiv:1804.02018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: dualities and enhanced symmetries, arXiv:1804.05707 [INSPIRE].
  67. [67]
    P. Calabrese, A. Pelissetto and E. Vicari, Multicritical phenomena in O(n 1) + O(n 2) symmetric theories, Phys. Rev. B 67 (2003) 054505 [cond-mat/0209580] [INSPIRE].
  68. [68]
    B.i. Halperin, T.C. Lubensky and S.-K. Ma, First order phase transitions in superconductors and smectic A liquid crystals, Phys. Rev. Lett. 32 (1974) 292 [INSPIRE].
  69. [69]
    S. Hikami, Renormalization group functions of CP N − 1 nonlinear σ-model and N component scalar QED model, Prog. Theor. Phys. 62 (1979) 226 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.N. Vasiliev and M. Yu. Nalimov, The CP N − 1 model: calculation of anomalous dimensions and the mixing matrices in the order 1/N, Theor. Math. Phys. 56 (1983) 643 [Teor. Mat. Fiz. 56 (1983) 15] [INSPIRE].
  71. [71]
    R.K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev. B 77 (2008) 155105 [arXiv:0801.0723] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Braun, H. Gies, L. Janssen and D. Roscher, Phase structure of many-flavor QED 3, Phys. Rev. D 90 (2014) 036002 [arXiv:1404.1362] [INSPIRE].ADSGoogle Scholar
  73. [73]
    L. Janssen and Y.-C. He, Critical behavior of the QED 3 -Gross-Neveu model: duality and deconfined criticality, Phys. Rev. B 96 (2017) 205113 [arXiv:1708.02256] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    B. Ihrig, L. Janssen, L.N. Mihaila and M.M. Scherer, Deconfined criticality from the QED 3 -Gross-Neveu model at three loops, Phys. Rev. B 98 (2018) 115163 [arXiv:1807.04958] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    N. Zerf, P. Marquard, R. Boyack and J. Maciejko, Critical behavior of the QED 3 -Gross-Neveu-Yukawa model at four loops, Phys. Rev. B 98 (2018) 165125 [arXiv:1808.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C. Xu, Renormalization group studies on four-fermion interaction instabilities on algebraic spin liquids, Phys. Rev. B 78 (2008) 054432 [arXiv:0803.0794].ADSCrossRefGoogle Scholar
  77. [77]
    S.M. Chester and S.S. Pufu, Anomalous dimensions of scalar operators in QED 3, JHEP 08 (2016) 069 [arXiv:1603.05582] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    W. Rantner and X.-G. Wen, Spin correlations in the algebraic spin liquid: implications for high-T c superconductors, Phys. Rev. B 66 (2002) 144501 [cond-mat/0201521] [INSPIRE].
  79. [79]
    M. Hermele, T. Senthil and M.P.A. Fisher, Algebraic spin liquid as the mother of many competing orders, Phys. Rev. B 72 (2005) 104404 [Erratum ibid. B 76 (2007) 149906] [cond-mat/0502215] [INSPIRE].
  80. [80]
    R. Boyack, A. Rayyan and J. Maciejko, Deconfined criticality in the QED 3 -Gross-Neveu-Yukawa model: the 1/N expansion revisited, Phys. Rev. B 99 (2019) 195135 [arXiv:1812.02720] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J.A. Gracey, Gauged Nambu-Jona-Lasinio model at O(1/N) with and without a Chern-Simons term, Mod. Phys. Lett. A 8 (1993) 2205 [hep-th/9306105] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J.A. Gracey, Critical point analysis of various fermionic field theories in the large N expansion, J. Phys. A 25 (1992) L109 [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.A. Gracey, Gauge independent critical exponents for QED coupled to a four Fermi interaction with and without a Chern-Simons term, Annals Phys. 224 (1993) 275 [hep-th/9301113] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  84. [84]
    J.A. Gracey, Fermion bilinear operator critical exponents at O(1/N 2) in the QED-Gross-Neveu universality class, Phys. Rev. D 98 (2018) 085012 [arXiv:1808.07697] [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  86. [86]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    M. Gremm and E. Katz, Mirror symmetry for N = 1 QED in three-dimensions, JHEP 02 (2000) 008 [hep-th/9906020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    J.A. Gracey, Critical exponents for the supersymmetric σ model, J. Phys. A 23 (1990) 2183 [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.International School of Advanced Studies (SISSA)TriesteItaly
  2. 2.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations