Advertisement

Starobinsky-like inflation and soft-SUSY breaking

  • Stephen F. King
  • Elena PerdomoEmail author
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We study a version of Starobinsky-like inflation in no-scale supergravity (SUGRA) where a Polonyi term in the hidden sector breaks supersymmetry (SUSY) after inflation, providing a link between the gravitino mass and inflation. We extend the theory to the visible sector and calculate the soft-SUSY breaking parameters depending on the modular weights in the superpotential and choice of Kähler potential. We are led to either no-scale SUGRA or pure gravity mediated SUSY breaking patterns, but with inflationary constraints on the Polonyi term setting a strict upper bound on the gravitino mass m3/2< 103 TeV. Since gaugino masses are significantly lighter than m3/2, this suggests that SUSY may be discovered at the LHC or FCC.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
  2. [2]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. 108B (1982) 389 [INSPIRE].
  3. [3]
    V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    A.D. Linde, Chaotic inflation, Phys. Lett. 129B (1983) 177 [INSPIRE].
  6. [6]
    A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164].
  7. [7]
    A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1.Google Scholar
  8. [8]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].
  9. [9]
    P.A.R. Ade et al., Planck 2015 results. xx. constraints on inflation., Astron. Astrophys. 594 (2016) A20.Google Scholar
  10. [10]
    J. Martin, C. Ringeval and V. Vennin, Encyclopaedia inflationaris, Phys. Dark Univ. 5-6 (2014) 75.Google Scholar
  11. [11]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
  12. [12]
    A.A. Starobinsky, The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett. 9 (1983) 302.Google Scholar
  13. [13]
    F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    A. Linde, M. Noorbala and A. Westphal, Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP 03 (2011) 013 [arXiv:1101.2652] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    S. Ferrara et al., Superconformal symmetry, NMSSM and inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].
  16. [16]
    E.J. Copeland et al., False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
  17. [17]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [INSPIRE].
  18. [18]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Cosmological inflation cries out for supersymmetry, Phys. Lett. 118B (1982) 335 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Fluctuations in a supersymmetric inflationary universe, Phys. Lett. 120B (1983) 331 [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].
  21. [21]
    D.H. Lyth, A bound on inflationary energy density from the isotropy of the microwave background, Phys. Lett. B 147 (1984) 403 [Erratum ibid. B 150 (1985) 465].Google Scholar
  22. [22]
    F. Björkeroth, S.F. King, K. Schmitz and T.T. Yanagida, Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale, Nucl. Phys. B 916 (2017) 688 [arXiv:1608.04911] [INSPIRE].
  23. [23]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Viable chaotic inflation as a source of neutrino masses and leptogenesis, Phys. Lett. B 757 (2016) 32 [arXiv:1601.00192] [INSPIRE].
  24. [24]
    K. Harigaya, M. Kawasaki and T.T. Yanagida, Lower bound of the tensor-to-scalar rati r≳0.1 in a nearly quadratic chaotic inflation model in supergravity, Phys. Lett. B 741 (2015) 267 [arXiv:1410.7163] [INSPIRE].
  25. [25]
    S. Hellerman, J. Kehayias and T.T. Yanagida, Chaotic inflation from nonlinear σ-models in supergravity, Phys. Lett. B 742 (2015) 390 [arXiv:1411.3720] [INSPIRE].
  26. [26]
    K. Schmitz and T.T. Yanagida, Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation, Phys. Rev. D 94 (2016) 074021 [arXiv:1604.04911] [INSPIRE].
  27. [27]
    J.R. Ellis, M. Raidal and T. Yanagida, Sneutrino inflation in the light of WMAP: Reheating, leptogenesis and flavor violating lepton decays, Phys. Lett. B 581 (2004) 9 [hep-ph/0303242] [INSPIRE].
  28. [28]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Chaotic inflation with right-handed sneutrinos after Planck, Phys. Lett. B 730 (2014) 24 [arXiv:1311.4253] [INSPIRE].
  29. [29]
    S. Antusch, M. Bastero-Gil, S.F. King and Q. Shafi, Sneutrino hybrid inflation in supergravity, Phys. Rev. D 71 (2005) 083519 [hep-ph/0411298] [INSPIRE].
  30. [30]
    S. Antusch and D. Nolde, Realising effective theories of tribrid inflation: Are there effects from messenger fields?, JCAP 09 (2015) 055 [arXiv:1505.06910] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    S. Antusch and K. Dutta, Non-thermal gravitino production in tribrid inflation, Phys. Rev. D 92 (2015) 083503 [arXiv:1505.04022] [INSPIRE].
  32. [32]
    R. Kallosh, A. Linde, D. Roest and T. Wrase, Sneutrino inflation with α-attractors, JCAP 11 (2016) 046 [arXiv:1607.08854] [INSPIRE].
  33. [33]
    P. Binetruy and M.K. Gaillard, Noncompact symmetries and scalar masses in superstring-inspired models, Phys. Lett. B 195 (1987) 382 [INSPIRE].
  34. [34]
    M.K. Gaillard, H. Murayama and K.A. Olive, Preserving flat directions during inflation, Phys. Lett. B 355 (1995) 71 [hep-ph/9504307] [INSPIRE].
  35. [35]
    K. Kadota and J. Yokoyama, D-term inflation and leptogenesis by right-handed sneutrino, Phys. Rev. D 73 (2006) 043507 [hep-ph/0512221] [INSPIRE].
  36. [36]
    H. Murayama, K. Nakayama, F. Takahashi and T.T. Yanagida, Sneutrino chaotic inflation and landscape, Phys. Lett. B 738 (2014) 196 [arXiv:1404.3857] [INSPIRE].
  37. [37]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Polynomial chaotic inflation in the Planck era, Phys. Lett. B 725 (2013) 111 [arXiv:1303.7315] [INSPIRE].
  38. [38]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Polynomial chaotic inflation in supergravity, JCAP 08 (2013) 038 [arXiv:1305.5099] [INSPIRE].CrossRefzbMATHGoogle Scholar
  39. [39]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Polynomial chaotic inflation in supergravity revisited, Phys. Lett. B 737 (2014) 151 [arXiv:1407.7082] [INSPIRE].
  40. [40]
    J.L. Evans, T. Gherghetta and M. Peloso, Affleck-Dine sneutrino inflation, Phys. Rev. D 92 (2015) 021303 [arXiv:1501.06560] [INSPIRE].
  41. [41]
    A.K. Saha and A. Sil, A dynamic modification to sneutrino chaotic inflation, JHEP 11 (2015) 118 [arXiv:1509.00218] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].
  43. [43]
    R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].
  44. [44]
    J.R. Ellis et al., SU(N, 1) inflation, Phys. Lett. B 152 (1985) 175 [Erratum ibid. B 156 (1985) 452].Google Scholar
  45. [45]
    H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev. D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].
  46. [46]
    S. Antusch et al., Chaotic inflation in supergravity with Heisenberg symmetry, Phys. Lett. B 679 (2009) 428 [arXiv:0905.0905] [INSPIRE].
  47. [47]
    S. Antusch, K. Dutta, J. Erdmenger and S. Halter, Towards matter inflation in heterotic string theory, JHEP 04 (2011) 065 [arXiv:1102.0093] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Antusch and F. Cefalà, SUGRA new inflation with Heisenberg symmetry, JCAP 10 (2013) 055 [arXiv:1306.6825] [INSPIRE].
  49. [49]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
  51. [51]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].
  52. [52]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric moduli stabilization and high-scale inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].
  53. [53]
    T. Li, Z. Li and D.V. Nanopoulos, Supergravity inflation with broken shift symmetry and large tensor-to-scalar ratio, JCAP 02 (2014) 028 [arXiv:1311.6770] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    S. Antusch et al., Solving the eta-Problem in Hybrid Inflation with Heisenberg Symmetry and Stabilized Modulus, JCAP 01 (2009) 040 [arXiv:0808.2425] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    P. Binétruy and M.K. Gaillard, Candidates for the inflaton field in superstring models, Phys. Rev. D 34 (1986) 3069 [INSPIRE].
  56. [56]
    K. Enqvist, D.V. Nanopoulos and M. Quiros, Inflation from a ripple on a vanishing potential, Phys. Lett. B 159 (1985) 249.Google Scholar
  57. [57]
    A. Addazi, S.V. Ketov and M. Yu. Khlopov, Gravitino and Polonyi production in supergravity, Eur. Phys. J. C 78 (2018) 642 [arXiv:1708.05393] [INSPIRE].
  58. [58]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, No-scale supergravity realization of the Starobinsky model of inflation, Phys. Rev. Lett. 111 (2013) 111301 [Erratum ibid. 111 (2013) 129902] [arXiv:1305.1247] [INSPIRE].
  59. [59]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like inflationary models as avatars of no-scale supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, A no-scale supergravity framework for sub-Planckian physics, Phys. Rev. D 89 (2014) 043502 [arXiv:1310.4770] [INSPIRE].
  61. [61]
    M.C. Romao and S.F. King, Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term, JHEP 07 (2017) 033 [arXiv:1703.08333] [INSPIRE].CrossRefzbMATHGoogle Scholar
  62. [62]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].
  63. [63]
    D. Croon, J. Ellis and N.E. Mavromatos, Wess-Zumino inflation in light of Planck, Phys. Lett. B 724 (2013) 165 [arXiv:1303.6253] [INSPIRE].
  64. [64]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No scale supersymmetric guts, Nucl. Phys. B 247 (1984) 373 [INSPIRE].
  65. [65]
    R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP 06 (2013) 028 [arXiv:1306.3214] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  66. [66]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos, K.A. Olive and M. Srednicki, SU(N, 1) inflation, Phys. Lett. 152B (1985) 175 [Erratum ibid. B 156 (1985) 452] [INSPIRE].
  67. [67]
    A.S. Goncharov and A.D. Linde, A simple realization of the inflationary universe scenario in SU(1, 1) supergravity, Class. Quant. Grav. 1 (1984) L75.Google Scholar
  68. [68]
    J. Ellis, A. Mustafayev and K.A. Olive, Resurrecting no-scale supergravity phenomenology, Eur. Phys. J. C 69 (2010) 219 [arXiv:1004.5399] [INSPIRE].
  69. [69]
    J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, No-scale inflation, Class. Quant. Grav. 33 (2016) 094001 [arXiv:1507.02308] [INSPIRE].
  70. [70]
    J. Ellis, No-scale supergravity inflation: A bridge between string theory and particle physics?, Int. J. Mod. Phys. D 25 (2016) 1630027.Google Scholar
  71. [71]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of WINO LSP at the large hadron collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
  72. [72]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].
  73. [73]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].
  74. [74]
    E. Dudas et al., Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].
  75. [75]
    J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, Universality in pure gravity mediation, Eur. Phys. J. C 73 (2013) 2468 [arXiv:1302.5346] [INSPIRE].
  76. [76]
    J.L. Evans, K.A. Olive, M. Ibe and T.T. Yanagida, Non-universalities in pure gravity mediation, Eur. Phys. J. C 73 (2013) 2611 [arXiv:1305.7461] [INSPIRE].
  77. [77]
    J.L. Evans and K.A. Olive, Universality in pure gravity mediation with vector multiplets, Phys. Rev. D 90 (2014) 115020 [arXiv:1408.5102] [INSPIRE].
  78. [78]
    J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, Light Higgsinos in pure gravity mediation, Phys. Rev. D 91 (2015) 055008 [arXiv:1412.3403] [INSPIRE].
  79. [79]
    J.L. Evans, N. Nagata and K.A. Olive, SU(5) grand unification in pure gravity mediation, Phys. Rev. D 91 (2015) 055027 [arXiv:1502.00034] [INSPIRE].
  80. [80]
    M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].
  81. [81]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
  82. [82]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  83. [83]
    J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP 04 (2000) 009 [hep-th/9911029] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    P. Binetruy, M.K. Gaillard and B.D. Nelson, One loop soft supersymmetry breaking terms in superstring effective theories, Nucl. Phys. B 604 (2001) 32 [hep-ph/0011081] [INSPIRE].
  85. [85]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].
  86. [86]
    E. Dudas, Y. Mambrini, A. Mustafayev and K.A. Olive, Relating the CMSSM and SUGRA models with GUT scale and super-GUT scale supersymmetry breaking, Eur. Phys. J. C 72 (2012) 2138 [Erratum ibid. C 73 (2013) 2430] [arXiv:1205.5988] [INSPIRE].
  87. [87]
    J.L. Evans, N. Nagata and K.A. Olive, A minimal SU(5) SuperGUT in pure gravity mediation, arXiv:1902.09084 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations