Advertisement

Systematic construction of basis invariants in the 2HDM

  • Andreas TrautnerEmail author
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

A new systematic method for the explicit construction of (basis-)invariants is introduced and employed to construct the full ring of basis invariants of the Two-Higgs-Doublet-Model (2HDM) scalar sector. Co- and invariant quantities are obtained by the use of hermitian projection operators. These projection operators are constructed from Young tableaux via birdtrack diagrams and they are used in two steps. First, to extract basis-covariant quantities, and second, to combine the covariants in order to obtain the actual basis invariants. The Hilbert series and Plethystic logarithm are used to find the number and structure of the complete set of generating invariants as well as their interrelations (syzygies). Having full control over the complete ring of (CP-even and CP-odd) basis invariants, we give a new and simple proof of the necessary and sufficient conditions for explicit CP conservation in the 2HDM, confirming earlier results by Gunion and Haber. The method generalizes to other models, with the only foreseeable limitation being computing power.

Keywords

Beyond Standard Model CP violation Global Symmetries Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Santamaria, Masses, mixings, Yukawa couplings and their symmetries, Phys. Lett. B 305 (1993) 90 [hep-ph/9302301] [INSPIRE].
  3. [3]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].Google Scholar
  4. [4]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Bernabeu, G.C. Branco and M. Gronau, CP Restrictions on Quark Mass Matrices, Phys. Lett. 169B (1986) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana Neutrinos and CP Violation in the Leptonic Sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  8. [8]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  9. [9]
    J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].
  10. [10]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, CP-odd invariants in models with several Higgs doublets, Phys. Lett. B 614 (2005) 187 [hep-ph/0502118] [INSPIRE].
  11. [11]
    I.P. Ivanov, Two-Higgs-doublet model from the group-theoretic perspective, Phys. Lett. B 632 (2006) 360 [hep-ph/0507132] [INSPIRE].
  12. [12]
    C.C. Nishi, CP violation conditions in N-Higgs-doublet potentials, Phys. Rev. D 74 (2006) 036003 [Erratum ibid. D 76 (2007) 119901] [hep-ph/0605153] [INSPIRE].
  13. [13]
    O. Lebedev, CP violating invariants in supersymmetry, Phys. Rev. D 67 (2003) 015013 [hep-ph/0209023] [INSPIRE].
  14. [14]
    H.K. Dreiner, J.S. Kim, O. Lebedev and M. Thormeier, Supersymmetric Jarlskog invariants: The Neutrino sector, Phys. Rev. D 76 (2007) 015006 [hep-ph/0703074] [INSPIRE].
  15. [15]
    I.P. Ivanov and J.P. Silva, CP-conserving multi-Higgs model with irremovable complex coefficients, Phys. Rev. D 93 (2016) 095014 [arXiv:1512.09276] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H.E. Haber, O.M. Ogreid, P. Osland and M.N. Rebelo, Symmetries and Mass Degeneracies in the Scalar Sector, JHEP 01 (2019) 042 [arXiv:1808.08629] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I.P. Ivanov, C.C. Nishi, J.P. Silva and A. Trautner, Basis-invariant conditions for CP symmetry of order four, Phys. Rev. D 99 (2019) 015039 [arXiv:1810.13396] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E.E. Jenkins and A.V. Manohar, Rephasing Invariants of Quark and Lepton Mixing Matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  22. [22]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tan β, Phys. Rev. D 74 (2006) 015018 [Erratum ibid. D 74 (2006) 059905] [hep-ph/0602242] [INSPIRE].
  23. [23]
    B. Grzadkowski, O.M. Ogreid and P. Osland, Spontaneous CP-violation in the 2HDM: physical conditions and the alignment limit, Phys. Rev. D 94 (2016) 115002 [arXiv:1609.04764] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.P. Bento, H.E. Haber, J.C. Romão and J.P. Silva, Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds, JHEP 11 (2017) 095 [arXiv:1708.09408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    O.M. Ogreid, Invariants and CP-violation in the 2HDM, PoS(CORFU2017)065 [arXiv:1803.09351] [INSPIRE].
  26. [26]
    T. Feldmann, T. Mannel and S. Schwertfeger, Renormalization Group Evolution of Flavour Invariants, JHEP 10 (2015) 007 [arXiv:1507.00328] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.H. Chiu and T.K. Kuo, Renormalization of the Neutrino Mass Matrix, Phys. Lett. B 760 (2016) 544 [arXiv:1510.07368] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    S.H. Chiu and T.K. Kuo, Renormalization of the quark mass matrix, Phys. Rev. D 93 (2016) 093006 [arXiv:1603.04568] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F. Herren, L. Mihaila and M. Steinhauser, Gauge and Yukawa coupling β-functions of two-Higgs-doublet models to three-loop order, Phys. Rev. D 97 (2018) 015016 [arXiv:1712.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A.V. Bednyakov, On three-loop RGE for the Higgs sector of 2HDM, arXiv:1809.04527 [INSPIRE].
  31. [31]
    J. Bijnens, J. Oredsson and J. Rathsman, Scalar Kinetic Mixing and the Renormalization Group, Phys. Lett. B 792 (2019) 238 [arXiv:1810.04483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    I. de Medeiros Varzielas, S.F. King, C. Luhn and T. Neder, CP-odd invariants for multi-Higgs models: applications with discrete symmetry, Phys. Rev. D 94 (2016) 056007 [arXiv:1603.06942] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    D. Berger, J.N. Howard and A. Rajaraman, Invariant Tensors in Gauge Theories, LHEP 1 (2018) 14 [arXiv:1806.04332] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Am. Math. Soc. (N.S.) 1 (1979) 475.Google Scholar
  35. [35]
    B. Sturmfels, Algorithms in invariant theory. Texts and Monographs in Symbolic Computation, second edition, Springer, Berlin Germany (2008).Google Scholar
  36. [36]
    E. Getzler and M.M. Kapranov, Modular operads, dg-ga/9408003 [INSPIRE].
  37. [37]
    J.M.F. Labastida and M. Marino, A New Point of View in the Theory of Knot and Link Invariants, math/0104180 [INSPIRE].
  38. [38]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Noma, T. Nakatsu and T. Tamakoshi, Plethystics and instantons on ALE spaces, hep-th/0611324 [INSPIRE].
  41. [41]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical Gauge Groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Bourget and A. Pini, Non-Connected Gauge Groups and the Plethystic Program, JHEP 10 (2017) 033 [arXiv:1706.03781] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys. 347 (2016) 363 [arXiv:1507.07240] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [arXiv:1512.03433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologists toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    R.M. Fonseca, Calculating the renormalisation group equations of a SUSY model with Susyno, Comput. Phys. Commun. 183 (2012) 2298 [arXiv:1106.5016] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Keppeler and M. Sjödahl, Hermitian Young Operators, J. Math. Phys. 55 (2014) 021702 [arXiv:1307.6147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    J. Alcock-Zeilinger and H. Weigert, Simplification Rules for Birdtrack Operators, J. Math. Phys. 58 (2017) 051701 [arXiv:1610.08801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    J. Alcock-Zeilinger and H. Weigert, Transition Operators, J. Math. Phys. 58 (2017) 051703 [arXiv:1610.08802] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    J. Alcock-Zeilinger and H. Weigert, Compact Hermitian Young Projection Operators, J. Math. Phys. 58 (2017) 051702 [arXiv:1610.10088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    P. Cvitanovic, Group theory for Feynman diagrams in non-Abelian gauge theories, Phys. Rev. D 14 (1976) 1536 [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    P. Cvitanovic, Group theory: Birdtracks, Lies and exceptional groups, Princeton University Press, Princeton U.S.A. (2008).CrossRefzbMATHGoogle Scholar
  58. [58]
    S. Keppeler, Birdtracks for SU(N), in QCD Master Class 2017, Saint-Jacut-de-la-Mer France (2017) [arXiv:1707.07280] [INSPIRE].
  59. [59]
    E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916) 89.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    M. Hochster and J.L. Roberts, Actions of reductive groups on regular rings and Cohen-Macaulay rings, Bull. Am. Math. Soc. 80 (1974) 281.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M. Hochster and J.L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math. 13 (1974) 115.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    F. Knop and P. Littelmann, Der Grad erzeugender Funktionen von Invariantenringen, Math. Z. 196 (1987) 211.MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    F. Knop, Der kanonische modul eines invariantenrings, J. Algebra 127 (1989) 40.MathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    G. Ecker, W. Grimus and H. Neufeld, A Standard Form for Generalized CP Transformations, J. Phys. A 20 (1987) L807 [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Bourget, A. Pini and D. Rodríguez-Gómez, Gauge theories from principally extended disconnected gauge groups, Nucl. Phys. B 940 (2019) 351 [arXiv:1804.01108] [INSPIRE].
  67. [67]
    N.M. Thiéry, Algebraic invariants of graphs; a study based on computer exploration, arXiv:0812.3082.
  68. [68]
    S.A. King, Fast Computation of Secondary Invariants, math/0701270.
  69. [69]
    F. Nagel, New aspects of gauge-boson couplings and the Higgs sector, Ph.D. Thesis, Heidelberg University, Heidelberg Germany (2004).Google Scholar
  70. [70]
    M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].
  71. [71]
    I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007) 035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [INSPIRE].
  72. [72]
    M. Maniatis, A. von Manteuffel and O. Nachtmann, CP violation in the general two-Higgs-doublet model: A Geometric view, Eur. Phys. J. C 57 (2008) 719 [arXiv:0707.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM. II. Minima, symmetries and topology, Phys. Rev. D 77 (2008) 015017 [arXiv:0710.3490] [INSPIRE].
  74. [74]
    P.M. Ferreira, M. Maniatis, O. Nachtmann and J.P. Silva, CP properties of symmetry-constrained two-Higgs-doublet models, JHEP 08 (2010) 125 [arXiv:1004.3207] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and J.P. Silva, Geometric picture of generalized-CP and Higgs-family transformations in the two-Higgs-doublet model, Int. J. Mod. Phys. A 26 (2011) 769 [arXiv:1010.0935] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    M. Maniatis and O. Nachtmann, Stability and symmetry breaking in the general three-Higgs-doublet model, JHEP 02 (2015) 058 [Erratum ibid. 1510 (2015) 149] [arXiv:1408.6833] [INSPIRE].
  77. [77]
    I.P. Ivanov and C.C. Nishi, Symmetry breaking patterns in 3HDM, JHEP 01 (2015) 021 [arXiv:1410.6139] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    R. Ehrenborg and G.-C. Rota, Apolarity and Canonical Forms for Homogeneous Polynomials, Eur. J. Comb. 14 (1993) 157.MathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    M. Beecken, J. Mittmann, and N. Saxena, Algebraic Independence and Blackbox Identity Testing, arXiv:1102.2789.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Bethe Center for Theoretical Physics und Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations