Advertisement

Indirect estimation of masses beyond collider reach — in EFT

  • Florian GoertzEmail author
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

We demonstrate how masses of new states, beyond direct experimental reach, could nevertheless be estimated in the framework of effective field theory (EFT), given broad assumptions on the underlying UV physics, however not sticking to a particular setup nor fixing the coupling strength of the scenario. The flat direction in the coupling-vs.-mass plane (g vs. M) is lifted by studying correlations between observables that depend on operators with a different ℏ scaling. We discuss the remaining model dependence (which is inherent even in the EFT approach to have control over the error due to the truncation of the power series), as well as prospects to test paradigms of UV physics. We provide an assessment of which correlations are best suited regarding sensitivity, give an overview of possible/expected effects in different observables, and demonstrate how perturbativity and direct search limits corner possible patterns of deviations from the SM in a given UV paradigm. In particular, given a certain pattern of deviations from the SM, we address the question whether we actually expect to see the new states at the LHC or the FCC, relying solely on EFT arguments.

Keywords

Beyond Standard Model Effective Field Theories Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
  2. [2]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].
  3. [3]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Weinberg, Dynamical approach to current algebra, Phys. Rev. Lett. 18 (1967) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
  7. [7]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
  8. [8]
    R.F. Dashen, Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183 (1969) 1245 [INSPIRE].
  9. [9]
    R.F. Dashen and M. WEinstein, Soft pions, chiral symmetry and phenomenological Lagrangians, Phys. Rev. 183 (1969) 1261 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.-F. Li and H. Pagels, Perturbation theory about a Goldstone symmetry, Phys. Rev. Lett. 26 (1971) 1204 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174 [INSPIRE].
  12. [12]
    K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev. B 4 (1971) 3184 [INSPIRE].
  13. [13]
    K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].
  14. [14]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].
  15. [15]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].
  16. [16]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
  17. [17]
    F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].
  19. [19]
    H.A. Weldon and A. Zee, Operator analysis of new physics, Nucl. Phys. B 173 (1980) 269 [INSPIRE].
  20. [20]
    J. Polchinski, Effective field theory and the Fermi surface, in Proceedings, Theoretical Advanced Study Institute (TASI 92): from black holes and strings to particles, Boulder, CO, U.S.A., 1-26 June 1992, pg. 235 [NSF-ITP-92-132] [hep-th/9210046] [INSPIRE].
  21. [21]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Pich, Effective field theory: course, in Probing the Standard Model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, 28 July-5 September 1997, pg. 949 [hep-ph/9806303] [INSPIRE].
  23. [23]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Probing the Standard Model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, 28 July-5 September 1997, pg. 281 [hep-ph/9806471] [INSPIRE].
  24. [24]
    M. Neubert, Effective field theory and heavy quark physics, in Physics in D ≥ 4. Proceedings, Theoretical Advanced Study Institute in elementary particle physics, TASI 2004, Boulder, CO, U.S.A., 6 June-2 July 2004, World Scientific, Singapore (2005), pg. 149 [hep-ph/0512222] [INSPIRE].
  25. [25]
    C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  28. [28]
    A.V. Manohar, Introduction to effective field theories, in Les Houches summer school: EFT in particle physics and cosmology, Les Houches, France, 3-28 July 2017 [arXiv:1804.05863] [INSPIRE].
  29. [29]
    G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  31. [31]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
  32. [32]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4π’ s in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
  33. [33]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  35. [35]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  39. [39]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].
  40. [40]
    R. Gauld, F. Goertz and U. Haisch, On minimal Z explanations of the BK μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].
  41. [41]
    W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the BK μ + μ anomaly after Moriond 2017, Eur. Phys. J. C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].
  42. [42]
    G. D’Amico et al., Flavour anomalies after the R K ∗ measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].
  43. [43]
    E. Megias, G. Panico, O. Pujolàs and M. Quirós, A natural origin for the LHCb anomalies, JHEP 09 (2016) 118 [arXiv:1608.02362] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.E. Peskin, Estimation of LHC and ILC capabilities for precision Higgs boson coupling measurements, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July-6 August 2013 [arXiv:1312.4974] [INSPIRE].
  45. [45]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].
  47. [47]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
  48. [48]
    L. Bian, J. Shu and Y. Zhang, Prospects for triple gauge coupling measurements at future lepton colliders and the 14 TeV LHC, JHEP 09 (2015) 206 [arXiv:1507.02238] [INSPIRE].
  49. [49]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Panico, F. Riva and A. Wulzer, Diboson interference resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].
  51. [51]
    D.M. Asner et al., ILC Higgs white paper, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July-6 August 2013 [arXiv:1310.0763] [INSPIRE].
  52. [52]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e + e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].
  53. [53]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Testing Higgs coupling precision and new physics scales at lepton colliders, Int. J. Mod. Phys. A 31 (2016) 1644004 [arXiv:1612.02718] [INSPIRE].
  54. [54]
    Y. Gershtein et al., Working group report: new particles, forces and dimensions, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July-6 August 2013 [arXiv:1311.0299] [INSPIRE].
  55. [55]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations