Advertisement

Kac-Moody and Virasoro characters from the perturbative Chern-Simons path integral

  • Massimo Porrati
  • Cedric YuEmail author
Open Access
Regular Article - Theoretical Physics
  • 64 Downloads

Abstract

We evaluate to one loop the functional integral that computes the partition functions of Chern-Simons theories based on compact groups, using the background field method and a covariant gauge fixing. We compare our computation with the results of other, less direct methods. We find that our method correctly computes the characters of irreducible representations of Kac-Moody algebras. To extend the computation to non-compact groups we need to perform an appropriate analytic continuation of the partition function of the compact group. Non-vacuum characters are found by inserting a Wilson loop in the functional integral. We then extend our method to Euclidean Anti-de Sitter pure gravity in three dimensions. The explicit computation unveils several interesting features and lessons. The most important among them is that the very definition of gravity in the first-order Chern-Simons formalism requires non-trivial analytic continuations of the gauge fields outside their original domains of definition.

Keywords

Chern-Simons Theories Conformal and W Symmetry Wilson, ’t Hooft and Polyakov loops AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  2. [2]
    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
  4. [4]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  5. [5]
    M. Honda, N. Iizuka, A. Tanaka and S. Terashima, Exact path integral for 3D higher spin gravity, Phys. Rev. D 95 (2017) 046016 [arXiv:1511.07546] [INSPIRE].
  6. [6]
    M. Honda, N. Iizuka, A. Tanaka and S. Terashima, Exact path integral for 3D quantum gravity II, Phys. Rev. D 93 (2016) 064014 [arXiv:1510.02142] [INSPIRE].
  7. [7]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].
  8. [8]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].
  9. [9]
    F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav. 27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M.F. Atiyah, V. K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry I, Math. Proc. Cambridge Phil. Soc. 77 (1975) 43.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Phil. Soc. 78 (1976) 405.Google Scholar
  12. [12]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc. 79 (1976) 71.Google Scholar
  13. [13]
    D. Bar-Natan and E. Witten, Perturbative expansion of Chern-Simons theory with noncompact gauge group, Commun. Math. Phys. 141 (1991) 423 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Oblak, unpublished.Google Scholar
  16. [16]
    V. Mikhaylov and E. Witten, Branes and supergroups, Commun. Math. Phys. 340 (2015) 699 [arXiv:1410.1175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Mazzeo and R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987) 260.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. Borthwick and P. Perry, Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc. 354 (2002) 1215.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C. Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: how to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].
  23. [23]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  24. [24]
    S.B. Giddings, The boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000) 41.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Guillope and M. Zworski, Scattering asymptotics for riemann surfaces, Ann. Math. 145 (1997) 597.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A.A. Bytsenko, M.E.X. Guimaraes and F.L. Williams, Spectral functions for BTZ black hole geometry, hep-th/0609102 [INSPIRE].
  28. [28]
    A.A. Bytsenko and M.E.X. Guimaraes, Truncated heat kernel and one-loop determinants for the BTZ geometry, Eur. Phys. J. C 58 (2008) 511 [arXiv:0809.1416] [INSPIRE].
  29. [29]
    P. Perry and F. Williams, Selberg Zeta function and trace formula for the BTZ black hole, Int. J. Pure Appl. Math. 9 (2000) 1.MathSciNetzbMATHGoogle Scholar
  30. [30]
    S. Datta and J.R. David, Higher spin quasinormal modes and one-loop determinants in the BTZ black hole, JHEP 03 (2012) 079 [arXiv:1112.4619] [INSPIRE].
  31. [31]
    J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS 3 and its applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].
  32. [32]
    C. Guillarmou, S. Moroianu and J. Park, η invariant and Selberg zeta function of dd type over convex co-compact hyperbolic manifolds, Adv. Math. 225 (2010) 2464.Google Scholar
  33. [33]
    A. Castro, C. Keeler and P. Szepietowski, Tweaking one-loop determinants in AdS 3, JHEP 10 (2017) 070 [arXiv:1707.06245] [INSPIRE].
  34. [34]
    D. Zwillinger, Standard mathematical tables and formulae, 8th edition, Academic Press, U.S.A. (2003).Google Scholar
  35. [35]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G. Cognola, E. Elizalde and S. Zerbini, Dirac functional determinants in terms of the η invariant and the noncommutative residue, Commun. Math. Phys. 237 (2003) 507 [hep-th/9910038] [INSPIRE].
  39. [39]
    R Torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971) 145 [INSPIRE].
  40. [40]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Besken, E. D’Hoker, A. Hegde and P. Kraus, Renormalization of gravitational Wilson lines, arXiv:1810.00766 [INSPIRE].
  42. [42]
    C. Beasley, Localization for Wilson loops in Chern-Simons theory, Adv. Theor. Math. Phys. 17 (2013) 1 [arXiv:0911.2687] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Diakonov and V.Yu. Petrov, A formula for the Wilson Loop, Phys. Lett. B 224 (1989) 131 [INSPIRE].
  44. [44]
    E. Witten, Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys. 137 (1991) 29 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Bañados and F. Mendez, A note on covariant action integrals in three-dimensions, Phys. Rev. D 58 (1998) 104014 [hep-th/9806065] [INSPIRE].
  46. [46]
    E. Witten, A note on boundary conditions in euclidean gravity, arXiv:1805.11559 [INSPIRE].
  47. [47]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
  48. [48]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].
  49. [49]
    G.W. Gibbons, S.W. Hawking and M.J. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].
  50. [50]
    M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2 + 1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].
  51. [51]
    M. Bershadsky and H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Commun. Math. Phys. 126 (1989) 49 [INSPIRE].
  52. [52]
    S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern-Simons gauge theory, J. Diff. Geom. 33 (1991) 787 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to string theory, Lect. Notes Phys. 779 (2009) 1.ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, Germany (2019).Google Scholar
  55. [55]
    L.J. Dixon, M.E. Peskin and J.D. Lykken, N = 2 superconformal symmetry and SO(2, 1) current algebra, Nucl. Phys. B 325 (1989) 329 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations