Exact correlators on the Wilson loop in \( \mathcal{N}=4 \) SYM: localization, defect CFT, and integrability

  • Simone Giombi
  • Shota KomatsuEmail author
Open Access
Regular Article - Theoretical Physics


We compute a set of correlation functions of operator insertions on the 1/8 BPS Wilson loop in \( \mathcal{N}=4 \) SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the ’t Hooft coupling and the rank of the gauge group. When applied to the 1/2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the “generalized Bremsstrahlung functions” previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.


AdS-CFT Correspondence Conformal Field Theory Supersymmetric Gauge Theory Wilson, ’t Hooft and Polyakov loops 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Simmons-Duffin, The Conformal Bootstrap, in proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., June 1–26, 2015, pp. 1–74 (2017) DOI: [arXiv:1602.07982] [INSPIRE].
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP 03 (2010) 038 [arXiv:0912.5440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Bonini, L. Griguolo and M. Preti, Correlators of chiral primaries and 1/8 BPS Wilson loops from perturbation theory, JHEP 09 (2014) 083 [arXiv:1405.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Bremsstrahlung function, leading Lüscher correction at weak coupling and localization, JHEP 02 (2016) 172 [arXiv:1511.05016] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    H. Au-Yang and J.H.H. Perk, Toda lattice equation and Wronskians in the 2d Ising model, Physica D 18 (1986) 365.ADSGoogle Scholar
  24. [24]
    H. Au-Yang and J.H.H. Perk, Critical correlations in a Z-invariant inhomogeneous Ising model, Physica A 144 (1987) 44.ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  29. [29]
    N. Kiryu and S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop: Perturbation and Hexagonalization, to appear.Google Scholar
  30. [30]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in \( \mathcal{N}=4 \) SYM and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N}=4 \) SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N}=4 \) Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].ADSGoogle Scholar
  35. [35]
    N. Drukker and J. Plefka, Superprotected n-point correlation functions of local operators in N = 4 super Yang-Mills, JHEP 04 (2009) 052 [arXiv:0901.3653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103 [arXiv:1602.05971] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    M. Baggio, V. Niarchos, K. Papadodimas and G. Vos, Large-N correlation functions in \( \mathcal{N}=2 \) superconformal QCD, JHEP 01 (2017) 101 [arXiv:1610.07612] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    D. Rodriguez-Gomez and J.G. Russo, Large N Correlation Functions in Superconformal Field Theories, JHEP 06 (2016) 109 [arXiv:1604.07416] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    D. Rodriguez-Gomez and J.G. Russo, Operator mixing in large N superconformal field theories on S 4 and correlators with Wilson loops, JHEP 12 (2016) 120 [arXiv:1607.07878] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Sizov and S. Valatka, Algebraic Curve for a Cusped Wilson Line, JHEP 05 (2014) 149 [arXiv:1306.2527] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    N. Gromov and F. Levkovich-Maslyuk, Quantum Spectral Curve for a cusped Wilson line in \( \mathcal{N}=4 \) SYM, JHEP 04 (2016) 134 [arXiv:1510.02098] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    B. Fiol, B. Garolera and G. Torrents, Exact momentum fluctuations of an accelerated quark in N = 4 super Yang-Mills, JHEP 06 (2013) 011 [arXiv:1302.6991] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    M. Sakaguchi and K. Yoshida, A semiclassical string description of Wilson loop with local operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    M. Sakaguchi and K. Yoshida, Holography of Non-relativistic String on AdS 5 × S 5, JHEP 02 (2008) 092 [arXiv:0712.4112] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Giombi and S. Komatsu, in progress.Google Scholar
  49. [49]
    B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in N = 2 Superconformal Field Theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: Towards the String Dual of N = 2 SU(N c) SYM with N f = 2N c, arXiv:0912.4918 [INSPIRE].
  51. [51]
    B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar N = 4 SYM Theory, arXiv:1505.06745 [INSPIRE].
  52. [52]
    M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP 11 (2017) 116 [arXiv:1706.02989] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    S. Komatsu, unpublished.Google Scholar
  54. [54]
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling Handles I: Nonplanar Integrability, arXiv:1711.05326 [INSPIRE].
  55. [55]
    B. Eden, Y. Jiang, D. le Plat and A. Sfondrini, Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP 02 (2018) 170 [arXiv:1710.10212] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum Spectral Curve and Structure Constants in N = 4 SYM: Cusps in the Ladder Limit, arXiv:1802.04237 [INSPIRE].
  57. [57]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations