Bootstrapping non-commutative gauge theories from L algebras

  • Ralph BlumenhagenEmail author
  • Ilka Brunner
  • Vladislav Kupriyanov
  • Dieter Lüst
Open Access
Regular Article - Theoretical Physics


Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L algebra. The appearance of a non-trivial A algebra is discussed, as well.


Non-Commutative Geometry D-branes Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Yu. Alekseev and V. Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999) 061901 [hep-th/9812193] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Kontsevich, Deformation quantization of Poisson manifolds. 1., Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for nonAbelian gauge groups on noncommutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    W. Behr and A. Sykora, Construction of gauge theories on curved noncommutative space-time, Nucl. Phys. B 698 (2004) 473 [hep-th/0309145] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Chatzistavrakidis et al., Noncommutative gauge theory and gravity in three dimensions, arXiv:1802.07550 [INSPIRE].
  11. [11]
    M. Dimitrijević et al., Gauge theories on the kappa Minkowski space-time, Eur. Phys. J. C 36 (2004) 117 [hep-th/0310116] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dimitrijević and L. Jonke, A twisted look on kappa-Minkowski: U(1) gauge theory, JHEP 12 (2011) 080 [arXiv:1107.3475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R.J. Szabo, Symmetry, gravity and noncommutativity, Class. Quant. Grav. 23 (2006) R199 [hep-th/0606233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    O. Hohm and B. Zwiebach, L algebras and field theory, Fortsch. Phys. 65 (2017) 1700014 [arXiv:1701.08824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Blumenhagen, M. Fuchs and M. Traube, \( \mathcal{W} \) algebras are L algebras, JHEP 07 (2017) 060 [arXiv:1705.00736] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Blumenhagen, M. Fuchs and M. Traube, On the structure of quantum L algebras, JHEP 10 (2017) 163 [arXiv:1706.09034] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    O. Hohm, V. Kupriyanov, D. Lüst and M. Traube, General constructions of L algebras, arXiv:1709.10004 [INSPIRE].
  22. [22]
    A. Yu. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and noncommutative geometry, JHEP 05 (2000) 010 [hep-th/0003187] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Penkava and P. Vanhaecke, Deformation quantization of polynomial Poisson algebras, math/9804022.
  24. [24]
    M. Herbst, A. Kling and M. Kreuzer, Cyclicity of nonassociative products on D-branes, JHEP 03 (2004) 003 [hep-th/0312043] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V.G. Kupriyanov and D.V. Vassilevich, Star products made (somewhat) easier, Eur. Phys. J. C 58 (2008) 627 [arXiv:0806.4615] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    V.G. Kupriyanov and D.V. Vassilevich, Nonassociative Weyl star products, JHEP 09 (2015) 103 [arXiv:1506.02329] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F.A. Berends, G.J.H. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Fulp, T. Lada and J. Stasheff, sh-Lie algebras induced by gauge transformations, Commun. Math. Phys. 231 (2002) 25 [INSPIRE].
  29. [29]
    A.M. Zeitlin, Homotopy Lie superalgebra in Yang-Mills theory, JHEP 09 (2007) 068 [arXiv:0708.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A.M. Zeitlin, Conformal field theory and algebraic structure of gauge theory, JHEP 03 (2010) 056 [arXiv:0812.1840] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Yu. Alekseev, A. Recknagel and V. Schomerus, Noncommutative world volume geometries: Branes on SU(2) and fuzzy spheres, JHEP 09 (1999) 023 [hep-th/9908040] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162 [hep-th/9909030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C. Bachas, M.R. Douglas and C. Schweigert, Flux stabilization of D-branes, JHEP 05 (2000) 048 [hep-th/0003037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J. Pawelczyk, SU(2) WZW D-branes and their noncommutative geometry from DBI action, JHEP 08 (2000) 006 [hep-th/0003057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and k-theory charges, JHEP 11 (2001) 062 [hep-th/0108100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Yu. Alekseev, A. Recknagel and V. Schomerus, Open strings and noncommutative geometry of branes on group manifolds, Mod. Phys. Lett. A 16 (2001) 325 [hep-th/0104054] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Maldacena and J.G. Russo, Large N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.J. van Tongeren, Yang-Baxter deformations, AdS/CFT and twist-noncommutative gauge theory, Nucl. Phys. B 904 (2016) 148 [arXiv:1506.01023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S.J. van Tongeren, Almost abelian twists and AdS/CFT, Phys. Lett. B 765 (2017) 344 [arXiv:1610.05677] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Araujo et al., Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev. D 95 (2017) 105006 [arXiv:1702.02861] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    T. Araujo et al., Conformal twists, Yang-Baxter σ-models & holographic noncommutativity, arXiv:1705.02063 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ralph Blumenhagen
    • 1
    Email author
  • Ilka Brunner
    • 2
  • Vladislav Kupriyanov
    • 1
    • 3
    • 4
  • Dieter Lüst
    • 1
    • 2
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.Arnold Sommerfeld Center for Theoretical PhysicsLMUMünchenGermany
  3. 3.CMCC-Universidade Federal do ABCSanto AndréBrazil
  4. 4.Tomsk State UniversityTomskRussia

Personalised recommendations