LHC limits on gluinos and squarks in the minimal Dirac gaugino model

  • Guillaume Chalons
  • Mark D. Goodsell
  • Sabine Kraml
  • Humberto Reyes-González
  • Sophie L. WilliamsonEmail author
Open Access
Regular Article - Theoretical Physics


Dirac gauginos are a well-motivated extension of the MSSM, leading to interesting phenomenological consequences. At the LHC, gluino-pair production is enhanced while squark production is suppressed as compared to the MSSM, and the decay signatures are altered by a more complex chargino and neutralino spectrum. We investigate how this impacts current gluino and squark mass limits from Run 2 of the LHC. Concretely, we compare different assumptions about the electroweak-ino spectrum through four benchmark models paying particular attention to the effect of the trilinear λS coupling, which induces a mass splitting between the mostly bino/U(1) adjoint states. Among other results, we show that for large λS the additional \( {\tilde{\chi}}_2^0\to f\overline{f}{\tilde{\chi}}_1^0 \) decays somewhat weaken the limits on gluinos (squarks) in case of heavy squarks (gluinos). Moreover, we compare the limits in the gluino vs. squark mass plane to those obtained in equivalent MSSM scenarios.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Fayet, Massive Gluinos, Phys. Lett. 78B (1978) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].
  3. [3]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].
  4. [4]
    S.P. Martin, Nonstandard Supersymmetry Breaking and Dirac Gaugino Masses without Supersoftness, Phys. Rev. D 92 (2015) 035004 [arXiv:1506.02105] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    I. Jack and D.R.T. Jones, Quasiinfrared fixed points and renormalization group invariant trajectories for nonholomorphic soft supersymmetry breaking, Phys. Rev. D 61 (2000) 095002 [hep-ph/9909570] [INSPIRE].
  6. [6]
    M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.S.M. Alves, J. Galloway, M. McCullough and N. Weiner, Goldstone Gauginos, Phys. Rev. Lett. 115 (2015) 161801 [arXiv:1502.03819] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.S.M. Alves, J. Galloway, M. McCullough and N. Weiner, Models of Goldstone Gauginos, Phys. Rev. D 93 (2016) 075021 [arXiv:1502.05055] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Antoniadis, K. Benakli, A. Delgado and M. Quirós, A new gauge mediation theory, Adv. Stud. Theor. Phys. 2 (2008) 645 [hep-ph/0610265] [INSPIRE].
  11. [11]
    J. Ellis, J. Quevillon and V. Sanz, Doubling Up on Supersymmetry in the Higgs Sector, JHEP 10 (2016) 086 [arXiv:1607.05541] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Benakli, M.D. Goodsell and S.L. Williamson, Higgs alignment from extended supersymmetry, Eur. Phys. J. C 78 (2018) 658 [arXiv:1801.08849] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Benakli, Y. Chen and G. Lafforgue-Marmet, R-symmetry for Higgs alignment without decoupling, Eur. Phys. J. C 79 (2019) 172 [arXiv:1811.08435] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Fok and G.D. Kribs, μ to e in R-symmetric Supersymmetry, Phys. Rev. D 82 (2010) 035010 [arXiv:1004.0556] [INSPIRE].
  16. [16]
    E. Dudas, M. Goodsell, L. Heurtier and P. Tziveloglou, Flavour models with Dirac and fake gluinos, Nucl. Phys. B 884 (2014) 632 [arXiv:1312.2011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Heikinheimo, M. Kellerstein and V. Sanz, How Many Supersymmetries?, JHEP 04 (2012) 043 [arXiv:1111.4322] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.D. Kribs and A. Martin, Dirac Gauginos in SupersymmetrySuppressed Jets + MET Signals: A Snowmass Whitepaper, arXiv:1308.3468 [INSPIRE].
  20. [20]
    G. Grilli di Cortona, E. Hardy and A.J. Powell, Dirac vs Majorana gauginos at a 100 TeV collider, JHEP 08 (2016) 014 [arXiv:1606.07090] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    J. Polchinski and L. Susskind, Breaking of Supersymmetry at Intermediate-Energy, Phys. Rev. D 26 (1982) 3661 [INSPIRE].ADSGoogle Scholar
  22. [22]
    L.J. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a μ term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].
  24. [24]
    S.D.L. Amigo, A.E. Blechman, P.J. Fox and E. Poppitz, R-symmetric gauge mediation, JHEP 01 (2009) 018 [arXiv:0809.1112] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    K. Benakli and M.D. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Benakli and M.D. Goodsell, Dirac Gauginos and Kinetic Mixing, Nucl. Phys. B 830 (2010) 315 [arXiv:0909.0017] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Benakli and M.D. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L.M. Carpenter, Dirac Gauginos, Negative Supertraces and Gauge Mediation, JHEP 09 (2012) 102 [arXiv:1007.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.D. Kribs, T. Okui and T.S. Roy, Viable Gravity-Mediated Supersymmetry Breaking, Phys. Rev. D 82 (2010) 115010 [arXiv:1008.1798] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    K. Benakli, M.D. Goodsell and A.-K. Maier, Generating μ and Bμ in models with Dirac Gauginos, Nucl. Phys. B 851 (2011) 445 [arXiv:1104.2695] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Kalinowski, Phenomenology of R-symmetric supersymmetry, Acta Phys. Polon. B 42 (2011) 2425 [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    C. Frugiuele and T. Gregoire, Making the Sneutrino a Higgs with a U(1)R Lepton Number, Phys. Rev. D 85 (2012) 015016 [arXiv:1107.4634] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E. Bertuzzo and C. Frugiuele, Fitting Neutrino Physics with a U(1)R Lepton Number, JHEP 05 (2012) 100 [arXiv:1203.5340] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Davies, Dirac gauginos and unification in F-theory, JHEP 10 (2012) 010 [arXiv:1205.1942] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Holographic Correlators for General Gauge Mediation, JHEP 08 (2012) 086 [arXiv:1205.4709] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Exploring Holographic General Gauge Mediation, JHEP 10 (2012) 179 [arXiv:1208.3615] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ‘L=R’ — U(1)R as the Origin of LeptonicRPV’, JHEP 03 (2013) 156 [arXiv:1210.0541] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ‘L=R U(1)R Lepton Number at the LHC, JHEP 05 (2013) 012 [arXiv:1210.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac Gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H. Itoyama and N. Maru, D-term Triggered Dynamical Supersymmetry Breaking, Phys. Rev. D 88 (2013) 025012 [arXiv:1301.7548] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U(1)R -lepton number model, JHEP 01 (2014) 101 [arXiv:1309.6538] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Csáki, J. Goodman, R. Pavesi and Y. Shirman, The m Db M problem of Dirac gauginos and its solutions, Phys. Rev. D 89 (2014) 055005 [arXiv:1310.4504] [INSPIRE].ADSGoogle Scholar
  45. [45]
    H. Itoyama and N. Maru, 126 GeV Higgs Boson Associated with D-term Triggered Dynamical Supersymmetry Breaking, Symmetry 7 (2015) 193 [arXiv:1312.4157] [INSPIRE].CrossRefzbMATHGoogle Scholar
  46. [46]
    H. Beauchesne and T. Gregoire, Electroweak precision measurements in supersymmetric models with a U(1)R lepton number, JHEP 05 (2014) 051 [arXiv:1402.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Bertuzzo, C. Frugiuele, T. Gregoire and E. Ponton, Dirac gauginos, R symmetry and the 125 GeV Higgs, JHEP 04 (2015) 089 [arXiv:1402.5432] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M.D. Goodsell and P. Tziveloglou, Dirac Gauginos in Low Scale Supersymmetry Breaking, Nucl. Phys. B 889 (2014) 650 [arXiv:1407.5076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Busbridge, Constrained Dirac gluino mediation, arXiv:1408.4605 [INSPIRE].
  50. [50]
    S. Chakraborty, A. Datta and S. Roy, hγγ in U(1)R -lepton number model with a right-handed neutrino, JHEP 02 (2015) 124 [Erratum ibid. 09 (2015) 077] [arXiv:1411.1525] [INSPIRE].
  51. [51]
    P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Higgs boson mass and electroweak observables in the MRSSM, JHEP 12 (2014) 124 [arXiv:1410.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Ding, T. Li, F. Staub, C. Tian and B. Zhu, Supersymmetric standard models with a pseudo-Dirac gluino from hybrid F- and D-term supersymmetry breaking, Phys. Rev. D 92 (2015) 015008 [arXiv:1502.03614] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L.M. Carpenter and J. Goodman, New Calculations in Dirac Gaugino Models: Operators, Expansions and Effects, JHEP 07 (2015) 107 [arXiv:1501.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Two-loop correction to the Higgs boson mass in the MRSSM, Adv. High Energy Phys. 2015 (2015) 760729 [arXiv:1504.05386] [INSPIRE].
  55. [55]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Exploring the Higgs sector of the MRSSM with a light scalar, JHEP 03 (2016) 007 [arXiv:1511.09334] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P. Diessner, W. Kotlarski, S. Liebschner and D. Stöckinger, Squark production in R-symmetric SUSY with Dirac gluinos: NLO corrections, JHEP 10 (2017) 142 [arXiv:1707.04557] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark Matter with Dirac and Majorana Gaugino Masses, JCAP 08 (2009) 027 [arXiv:0905.1043] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    K. Benakli, M. Goodsell, F. Staub and W. Porod, Constrained minimal Dirac gaugino supersymmetric standard model, Phys. Rev. D 90 (2014) 045017 [arXiv:1403.5122] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M.D. Goodsell, M.E. Krauss, T. Müller, W. Porod and F. Staub, Dark matter scenarios in a constrained model with Dirac gauginos, JHEP 10 (2015) 132 [arXiv:1507.01010] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K. Benakli, L. Darmé, M.D. Goodsell and J. Harz, The Di-Photon Excess in a Perturbative SUSY Model, Nucl. Phys. B 911 (2016) 127 [arXiv:1605.05313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    P. Diessner, Phenomenological Study of the Minimal R-symmetric Supersymmetric Standard Sodel, Ph.D. Thesis, Tech. University, Dresden, Germany, (2016).Google Scholar
  62. [62]
    C. Alvarado, A. Delgado and A. Martin, Constraining the R-symmetric chargino NLSP at the LHC, Phys. Rev. D 97 (2018) 115044 [arXiv:1803.00624] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Plehn and T.M.P. Tait, Seeking Sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.Y. Choi, M. Drees, J. Kalinowski, J.M. Kim, E. Popenda and P.M. Zerwas, Color-Octet Scalars of N = 2 Supersymmetry at the LHC, Phys. Lett. B 672 (2009) 246 [arXiv:0812.3586] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S.Y. Choi, J. Kalinowski, J.M. Kim and E. Popenda, Scalar gluons and Dirac gluinos at the LHC, Acta Phys. Polon. B 40 (2009) 2913 [arXiv:0911.1951] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S.Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski, J.M. Kim and P.M. Zerwas, Dirac Neutralinos and Electroweak Scalar Bosons of N = 1/N = 2 Hybrid Supersymmetry at Colliders, JHEP 08 (2010) 025 [arXiv:1005.0818] [INSPIRE].ADSzbMATHGoogle Scholar
  67. [67]
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Sgluon Pair Production to Next-to-Leading Order, Phys. Rev. D 85 (2012) 114024 [arXiv:1203.6358] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C.-Y. Chen, A. Freitas, T. Han and K.S.M. Lee, Heavy Color-Octet Particles at the LHC, JHEP 05 (2015) 135 [arXiv:1410.8113] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L. Beck, F. Blekman, D. Dobur, B. Fuks, J. Keaveney and K. Mawatari, Probing top-philic sgluons with LHC Run I data, Phys. Lett. B 746 (2015) 48 [arXiv:1501.07580] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Kotlarski, Sgluons in the same-sign lepton searches, JHEP 02 (2017) 027 [arXiv:1608.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    W. Kotlarski, Scalar color octets and triplets in the SUSY with R-symmetry, J. Phys. Conf. Ser. 873 (2017) 012043 [arXiv:1703.09548] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    L. Darmé, B. Fuks and M. Goodsell, Cornering sgluons with four-top-quark events, Phys. Lett. B 784 (2018) 223 [arXiv:1805.10835] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.Y. Choi, M. Drees, A. Freitas and P.M. Zerwas, Testing the Majorana Nature of Gluinos and Neutralinos, Phys. Rev. D 78 (2008) 095007 [arXiv:0808.2410] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  75. [75]
    F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  76. [76]
    F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  78. [78]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    M.D. Goodsell, S. Liebler and F. Staub, Generic calculation of two-body partial decay widths at the full one-loop level, Eur. Phys. J. C 77 (2017) 758 [arXiv:1703.09237] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  81. [81]
    M.D. Goodsell, K. Nickel and F. Staub, Two-Loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno, Eur. Phys. J. C 75 (2015) 32 [arXiv:1411.0675] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Goodsell, K. Nickel and F. Staub, Generic two-loop Higgs mass calculation from a diagrammatic approach, Eur. Phys. J. C 75 (2015) 290 [arXiv:1503.03098] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J. Braathen, M.D. Goodsell and F. Staub, Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons, Eur. Phys. J. C 77 (2017) 757 [arXiv:1706.05372] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    Zenodo dataset, Dirac gaugino benchmark points from arXiv:1812.09293,
  85. [85]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].
  86. [86]
    CMS collaboration, Search for new phenomena with the M T2 variable in the all-hadronic final state produced in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 77 (2017) 710 [arXiv:1705.04650] [INSPIRE].
  87. [87]
    F. Ambrogi, S. Kraml, S. Kulkarni, U. Laa, A. Lessa and W. Waltenberger, On the coverage of the pMSSM by simplified model results, Eur. Phys. J. C 78 (2018) 215 [arXiv:1707.09036] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    F. Ambrogi et al., SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps, Comput. Phys. Commun. 227 (2018) 72 [arXiv:1701.06586] [INSPIRE].
  89. [89]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Dutta, S. Kraml, A. Lessa and W. Waltenberger, SModelS extension with the CMS supersymmetry search results from Run 2, LHEP 1 (2018) 5 [arXiv:1803.02204] [INSPIRE].Google Scholar
  91. [91]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MADANALYSIS 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].
  96. [96]
    G. Chalons and H. Reyes-González, MadAnalysis 5 implementation of ATLAS-SUSY-16-07 (arXiv:1712.02332), [INSPIRE].
  97. [97]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  98. [98]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  99. [99]
    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Conte and B. Fuks, Confronting new physics theories to LHC data with MADANALYSIS 5, Int. J. Mod. Phys. A 33 (2018) 1830027 [arXiv:1808.00480] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
  102. [102]
  103. [103]
    Zenodo dataset, Data for Figs. 5 and 9 of arXiv:1812.09293,

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  2. 2.Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et CNRSParis Cedex 05France

Personalised recommendations