# A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector

- 27 Downloads

## Abstract

We present a novel framework for carrying out global analyses of the Standard Model Effective Field Theory (SMEFT) at dimension-six: SMEFiT. This approach is based on the Monte Carlo replica method for deriving a faithful estimate of the experimental and theoretical uncertainties and enables one to construct the probability distribution in the space of the SMEFT degrees of freedom. As a proof of concept of the SMEFiT methodology, we present a first study of the constraints on the SMEFT provided by top quark production measurements from the LHC. Our analysis includes more than 30 independent measurements from 10 different processes at \( \sqrt{s} \) = 8 and 13 TeV such as inclusive \( t\overline{t} \) and single-top production and the associated production of top quarks with weak vector bosons and the Higgs boson. State-of-the-art theoretical calculations are adopted both for the Standard Model and for the SMEFT contributions, where in the latter case NLO QCD corrections are included for the majority of processes. We derive bounds for the 34 degrees of freedom relevant for the interpretation of the LHC top quark data and compare these bounds with previously reported constraints. Our study illustrates the significant potential of LHC precision measurements to constrain physics beyond the Standard Model in a model-independent way, and paves the way towards a global analysis of the SMEFT.

## Keywords

Beyond Standard Model Effective Field Theories Perturbative QCD## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]S. Weinberg,
*Baryon and Lepton Nonconserving Processes*,*Phys. Rev. Lett.***43**(1979) 1566 [INSPIRE].ADSGoogle Scholar - [2]W. Buchmüller and D. Wyler,
*Effective Lagrangian Analysis of New Interactions and Flavor Conservation*,*Nucl. Phys.***B 268**(1986) 621 [INSPIRE].ADSGoogle Scholar - [3]B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek,
*Dimension-Six Terms in the Standard Model Lagrangian*,*JHEP***10**(2010) 085 [arXiv:1008.4884] [INSPIRE].ADSzbMATHGoogle Scholar - [4]S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman,
*Precision Probes of QCD at High Energies*,*JHEP***07**(2017) 097 [arXiv:1706.03068] [INSPIRE].ADSGoogle Scholar - [5]C. Englert, R. Kogler, H. Schulz and M. Spannowsky,
*Higgs coupling measurements at the LHC*,*Eur. Phys. J.***C 76**(2016) 393 [arXiv:1511.05170] [INSPIRE].ADSGoogle Scholar - [6]J. Ellis, V. Sanz and T. You,
*The Effective Standard Model after LHC Run I*,*JHEP***03**(2015) 157 [arXiv:1410.7703] [INSPIRE].Google Scholar - [7]S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman,
*Catching a New Force by the Tail*,*Phys. Rev. Lett.***120**(2018) 101801 [arXiv:1712.02347] [INSPIRE].ADSGoogle Scholar - [8]S. Alioli, W. Dekens, M. Girard and E. Mereghetti,
*NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG*,*JHEP***08**(2018) 205 [arXiv:1804.07407] [INSPIRE].ADSGoogle Scholar - [9]S. Alte, M. König and W. Shepherd,
*Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events*,*JHEP***01**(2018) 094 [arXiv:1711.07484] [INSPIRE].ADSGoogle Scholar - [10]D. Barducci et al.,
*Interpreting top-quark LHC measurements in the standard-model effective field theory*, arXiv:1802.07237 [INSPIRE]. - [11]N. Castro, J. Erdmann, C. Grunwald, K. Kröninger and N.-A. Rosien,
*EFTfitter*—*A tool for interpreting measurements in the context of effective field theories*,*Eur. Phys. J.***C 76**(2016) 432 [arXiv:1605.05585] [INSPIRE].ADSGoogle Scholar - [12]J. de Blas et al.,
*Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future*,*JHEP***12**(2016) 135 [arXiv:1608.01509] [INSPIRE].ADSzbMATHGoogle Scholar - [13]J. Ellis, C.W. Murphy, V. Sanz and T. You,
*Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data*,*JHEP***06**(2018) 146 [arXiv:1803.03252] [INSPIRE].ADSGoogle Scholar - [14]J. Ellis, V. Sanz and T. You,
*Complete Higgs Sector Constraints on Dimension-6 Operators*,*JHEP***07**(2014) 036 [arXiv:1404.3667] [INSPIRE].ADSGoogle Scholar - [15]
- [16]A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch,
*The Gauge-Higgs Legacy of the LHC Run I*,*JHEP***07**(2016) 152 [arXiv:1604.03105] [INSPIRE]. - [17]A. Azatov, R. Contino, G. Panico and M. Son,
*Effective field theory analysis of double Higgs boson production via gluon fusion*,*Phys. Rev.***D 92**(2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar - [18]A. Biekötter, T. Corbett and T. Plehn,
*The Gauge-Higgs Legacy of the LHC Run II*, arXiv:1812.07587 [INSPIRE]. - [19]M. Schulze and Y. Soreq,
*Pinning down electroweak dipole operators of the top quark*,*Eur. Phys. J.***C 76**(2016) 466 [arXiv:1603.08911] [INSPIRE].ADSGoogle Scholar - [20]V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti,
*Constraining the top-Higgs sector of the Standard Model Effective Field Theory*,*Phys. Rev.***D 94**(2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar - [21]S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti,
*Right-handed charged currents in the era of the Large Hadron Collider*,*JHEP***05**(2017) 086 [arXiv:1703.04751] [INSPIRE].ADSGoogle Scholar - [22]R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer,
*Electroweak Precision Tests in High-Energy Diboson Processes*,*JHEP***02**(2018) 111 [arXiv:1712.01310] [INSPIRE].ADSGoogle Scholar - [23]J. Gao, L. Harland-Lang and J. Rojo,
*The Structure of the Proton in the LHC Precision Era*,*Phys. Rept.***742**(2018) 1 [arXiv:1709.04922] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [24]J. Butterworth et al.,
*PDF4LHC recommendations for LHC Run II*,*J. Phys.***G 43**(2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSGoogle Scholar - [25]J. Rojo et al.,
*The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II*,*J. Phys.***G 42**(2015) 103103 [arXiv:1507.00556] [INSPIRE].ADSGoogle Scholar - [26]NNPDF collaboration,
*Unbiased determination of the proton structure function F*_{2}^{p}*with faithful uncertainty estimation*,*JHEP***03**(2005) 080 [hep-ph/0501067] [INSPIRE]. - [27]NNPDF collaboration,
*Neural network determination of parton distributions: The Nonsinglet case*,*JHEP***03**(2007) 039 [hep-ph/0701127] [INSPIRE]. - [28]NNPDF collaboration,
*A Determination of parton distributions with faithful uncertainty estimation*,*Nucl. Phys.***B 809**(2009) 1 [*Erratum ibid.***B 816**(2009) 293] [arXiv:0808.1231] [INSPIRE]. - [29]NNPDF collaboration,
*Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering*,*Nucl. Phys.***B 823**(2009) 195 [arXiv:0906.1958] [INSPIRE]. - [30]R.D. Ball et al.,
*A first unbiased global NLO determination of parton distributions and their uncertainties*,*Nucl. Phys.***B 838**(2010) 136 [arXiv:1002.4407] [INSPIRE].ADSzbMATHGoogle Scholar - [31]R.D. Ball et al.,
*Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology*,*Nucl. Phys.***B 849**(2011) 296 [arXiv:1101.1300] [INSPIRE].ADSGoogle Scholar - [32]R.D. Ball et al.,
*Parton distributions with LHC data*,*Nucl. Phys.***B 867**(2013) 244 [arXiv:1207.1303] [INSPIRE].ADSGoogle Scholar - [33]NNPDF collaboration,
*Parton distributions for the LHC Run II*,*JHEP***04**(2015) 040 [arXiv:1410.8849] [INSPIRE]. - [34]NNPDF collaboration,
*A Determination of the Charm Content of the Proton*,*Eur. Phys. J.***C 76**(2016) 647 [arXiv:1605.06515] [INSPIRE]. - [35]NNPDF collaboration,
*A first unbiased global determination of polarized PDFs and their uncertainties*,*Nucl. Phys.***B 887**(2014) 276 [arXiv:1406.5539] [INSPIRE]. - [36]NNPDF collaboration,
*Parton distributions from high-precision collider data*,*Eur. Phys. J.***C 77**(2017) 663 [arXiv:1706.00428] [INSPIRE]. - [37]NNPDF collaboration,
*A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties*,*Eur. Phys. J.***C 77**(2017) 516 [arXiv:1706.07049] [INSPIRE]. - [38]NNPDF collaboration,
*Charged hadron fragmentation functions from collider data*,*Eur. Phys. J.***C 78**(2018) 651 [arXiv:1807.03310] [INSPIRE]. - [39]J. Alwall et al.,
*The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations*,*JHEP***07**(2014) 079 [arXiv:1405.0301] [INSPIRE].ADSGoogle Scholar - [40]F. Maltoni, E. Vryonidou and C. Zhang,
*Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD*,*JHEP***10**(2016) 123 [arXiv:1607.05330] [INSPIRE].ADSGoogle Scholar - [41]C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang,
*Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation*,*JHEP***10**(2018) 005 [arXiv:1804.07773] [INSPIRE].ADSGoogle Scholar - [42]M. Chala, J. Santiago and M. Spannowsky,
*Constraining four-fermion operators using rare top decays*, arXiv:1809.09624 [INSPIRE]. - [43]G. Durieux, F. Maltoni and C. Zhang,
*Global approach to top-quark flavor-changing interactions*,*Phys. Rev.***D 91**(2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar - [44]J.A. Aguilar-Saavedra,
*Effective four-fermion operators in top physics: A Roadmap*,*Nucl. Phys.***B 843**(2011) 638 [*Erratum ibid.***B 851**(2011) 443] [arXiv:1008.3562] [INSPIRE]. - [45]J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang,
*Learning to pinpoint effective operators at the LHC: a study of the*\( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \)*signature*,*JHEP***11**(2018) 131 [arXiv:1807.02130] [INSPIRE]. - [46]G. Durieux, J. Gu, E. Vryonidou and C. Zhang,
*Probing top-quark couplings indirectly at Higgs factories*,*Chin. Phys.***C 42**(2018) 123107 [arXiv:1809.03520] [INSPIRE].ADSGoogle Scholar - [47]A. Buckley et al.,
*Global fit of top quark effective theory to data*,*Phys. Rev.***D 92**(2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar - [48]A. Buckley et al.,
*Constraining top quark effective theory in the LHC Run II era*,*JHEP***04**(2016) 015 [arXiv:1512.03360] [INSPIRE].ADSGoogle Scholar - [49]
- [50]C. Degrande et al.,
*Effective Field Theory: A Modern Approach to Anomalous Couplings*,*Annals Phys.***335**(2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [51]A. Kobach,
*Baryon Number, Lepton Number and Operator Dimension in the Standard Model*,*Phys. Lett.***B 758**(2016) 455 [arXiv:1604.05726] [INSPIRE].ADSzbMATHGoogle Scholar - [52]A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz,
*Rosetta: an operator basis translator for Standard Model effective field theory*,*Eur. Phys. J.***C 75**(2015) 583 [arXiv:1508.05895] [INSPIRE].ADSGoogle Scholar - [53]R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott,
*Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology*,*JHEP***04**(2014) 159 [arXiv:1312.2014] [INSPIRE].ADSGoogle Scholar - [54]G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia,
*Minimal flavor violation: An Effective field theory approach*,*Nucl. Phys.***B 645**(2002) 155 [hep-ph/0207036] [INSPIRE]. - [55]C. Zhang,
*Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity*,*Chin. Phys.***C 42**(2018) 023104 [arXiv:1708.05928] [INSPIRE].ADSGoogle Scholar - [56]C. Englert and M. Russell,
*Top quark electroweak couplings at future lepton colliders*,*Eur. Phys. J.***C 77**(2017) 535 [arXiv:1704.01782] [INSPIRE].ADSGoogle Scholar - [57]I. Brivio, Y. Jiang and M. Trott,
*The SMEFTsim package, theory and tools*,*JHEP***12**(2017) 070 [arXiv:1709.06492] [INSPIRE].ADSGoogle Scholar - [58]P.L. Cho and E.H. Simmons,
*Searching for G3 in*\( t\overline{t} \)*production*,*Phys. Rev.***D 51**(1995) 2360 [hep-ph/9408206] [INSPIRE]. - [59]F. Krauss, S. Kuttimalai and T. Plehn,
*LHC multijet events as a probe for anomalous dimension-six gluon interactions*,*Phys. Rev.***D 95**(2017) 035024 [arXiv:1611.00767] [INSPIRE].ADSGoogle Scholar - [60]V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou,
*Constraining anomalous gluon self-interactions at the LHC: a reappraisal*,*JHEP***07**(2018) 093 [arXiv:1806.04696] [INSPIRE].ADSGoogle Scholar - [61]A. Falkowski and F. Riva,
*Model-independent precision constraints on dimension-6 operators*,*JHEP***02**(2015) 039 [arXiv:1411.0669] [INSPIRE].ADSGoogle Scholar - [62]C. Grojean, W. Skiba and J. Terning,
*Disguising the oblique parameters*,*Phys. Rev.***D 73**(2006) 075008 [hep-ph/0602154] [INSPIRE]. - [63]I. Brivio and M. Trott,
*Scheming in the SMEFT… and a reparameterization invariance!*,*JHEP***07**(2017) 148 [*Addendum ibid.***05**(2018) 136] [arXiv:1701.06424] [INSPIRE]. - [64]K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld,
*Low-energy effects of new interactions in the electroweak boson sector*,*Phys. Rev.***D 48**(1993) 2182 [INSPIRE].ADSGoogle Scholar - [65]J. Bramante, A. Delgado, L. Lehman and A. Martin,
*Boosted Higgses from chromomagnetic b*’*s:*\( b\overline{b}h \)*at high luminosity*,*Phys. Rev.***D 93**(2016) 053001 [arXiv:1410.3484] [INSPIRE]. - [66]C. Zhang,
*Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory*,*Phys. Rev. Lett.***116**(2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSGoogle Scholar - [67]C. Degrande, F. Maltoni, J. Wang and C. Zhang,
*Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes*,*Phys. Rev.***D 91**(2015) 034024 [arXiv:1412.5594] [INSPIRE].ADSGoogle Scholar - [68]D. Buarque Franzosi and C. Zhang,
*Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD*,*Phys. Rev.***D 91**(2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar - [69]O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang,
*Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD*,*JHEP***05**(2016) 052 [arXiv:1601.08193] [INSPIRE].ADSGoogle Scholar - [70]G. Durieux, M. Perelló, M. Vos and C. Zhang,
*Global and optimal probes for the top-quark effective field theory at future lepton colliders*,*JHEP***10**(2018) 168 [arXiv:1807.02121] [INSPIRE].ADSGoogle Scholar - [71]P. Artoisenet et al.,
*A framework for Higgs characterisation*,*JHEP***11**(2013) 043 [arXiv:1306.6464] [INSPIRE].ADSGoogle Scholar - [72]F. Maltoni, K. Mawatari and M. Zaro,
*Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects*,*Eur. Phys. J.***C 74**(2014) 2710 [arXiv:1311.1829] [INSPIRE].ADSGoogle Scholar - [73]F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro,
*Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction*,*Eur. Phys. J.***C 74**(2014) 3065 [arXiv:1407.5089] [INSPIRE].ADSGoogle Scholar - [74]F. Demartin, F. Maltoni, K. Mawatari and M. Zaro,
*Higgs production in association with a single top quark at the LHC*,*Eur. Phys. J.***C 75**(2015) 267 [arXiv:1504.00611] [INSPIRE].ADSGoogle Scholar - [75]K. Mimasu, V. Sanz and C. Williams,
*Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons*,*JHEP***08**(2016) 039 [arXiv:1512.02572] [INSPIRE].ADSGoogle Scholar - [76]C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz,
*Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD*,*Eur. Phys. J.***C 77**(2017) 262 [arXiv:1609.04833] [INSPIRE].ADSGoogle Scholar - [77]S. Fichet, A. Tonero and P. Rebello Teles,
*Sharpening the shape analysis for higher-dimensional operator searches*,*Phys. Rev.***D 96**(2017) 036003 [arXiv:1611.01165] [INSPIRE].ADSGoogle Scholar - [78]C. Zhang,
*Effective field theory approach to top-quark decay at next-to-leading order in QCD*,*Phys. Rev.***D 90**(2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar - [79]E.E. Jenkins, A.V. Manohar and M. Trott,
*Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence*,*JHEP***10**(2013) 087 [arXiv:1308.2627] [INSPIRE].ADSzbMATHGoogle Scholar - [80]E.E. Jenkins, A.V. Manohar and M. Trott,
*Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence*,*JHEP***01**(2014) 035 [arXiv:1310.4838] [INSPIRE].ADSGoogle Scholar - [81]N. Deutschmann, C. Duhr, F. Maltoni and E. Vryonidou,
*Gluon-fusion Higgs production in the Standard Model Effective Field Theory*,*JHEP***12**(2017) 063 [*Erratum ibid.***02**(2018) 159] [arXiv:1708.00460] [INSPIRE]. - [82]G. Panico, F. Riva and A. Wulzer,
*Diboson Interference Resurrection*,*Phys. Lett.***B 776**(2018) 473 [arXiv:1708.07823] [INSPIRE].ADSGoogle Scholar - [83]A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini,
*Novel measurements of anomalous triple gauge couplings for the LHC*,*JHEP***10**(2017) 027 [arXiv:1707.08060] [INSPIRE].ADSGoogle Scholar - [84]A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son,
*Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC*,*JHEP***02**(2017) 115 [arXiv:1609.06312] [INSPIRE].ADSGoogle Scholar - [85]M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer,
*Energy helps accuracy: electroweak precision tests at hadron colliders*,*Phys. Lett.***B 772**(2017) 210 [arXiv:1609.08157] [INSPIRE].ADSGoogle Scholar - [86]A. Greljo and D. Marzocca,
*High-p*_{T}*dilepton tails and flavor physics*,*Eur. Phys. J.***C 77**(2017) 548 [arXiv:1704.09015] [INSPIRE].ADSGoogle Scholar - [87]A. Falkowski, M. González-Alonso and K. Mimouni,
*Compilation of low-energy constraints on 4-fermion operators in the SMEFT*,*JHEP***08**(2017) 123 [arXiv:1706.03783] [INSPIRE].ADSGoogle Scholar - [88]R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva,
*On the Validity of the Effective Field Theory Approach to SM Precision Tests*,*JHEP***07**(2016) 144 [arXiv:1604.06444] [INSPIRE].ADSGoogle Scholar - [89]O. Domenech, A. Pomarol and J. Serra,
*Probing the SM with Dijets at the LHC*,*Phys. Rev.***D 85**(2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar - [90]A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva,
*Vices and virtues of Higgs effective field theories at large energy*,*Phys. Rev.***D 91**(2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar - [91]A. Biekötter, J. Brehmer and T. Plehn,
*Extending the limits of Higgs effective theory*,*Phys. Rev.***D 94**(2016) 055032 [arXiv:1602.05202] [INSPIRE].ADSGoogle Scholar - [92]A. Azatov, R. Contino, C.S. Machado and F. Riva,
*Helicity selection rules and noninterference for BSM amplitudes*,*Phys. Rev.***D 95**(2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar - [93]ATLAS collaboration,
*Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at*\( \sqrt{s} \) = 8*TeV using the ATLAS detector*,*Eur. Phys. J.***C 76**(2016) 538 [arXiv:1511.04716] [INSPIRE]. - [94]CMS collaboration,
*Measurement of the differential cross section for top quark pair production in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*Eur. Phys. J.***C 75**(2015) 542 [arXiv:1505.04480] [INSPIRE]. - [95]CMS collaboration,
*Measurement of double-differential cross sections for top quark pair production in pp collisions at*\( \sqrt{s} \) = 8*TeV and impact on parton distribution functions*,*Eur. Phys. J.***C 77**(2017) 459 [arXiv:1703.01630] [INSPIRE]. - [96]ATLAS collaboration,
*Measurement of the W boson polarisation in*\( t\overline{t} \)*events from pp collisions at*\( \sqrt{s} \) = 8*TeV in the lepton + jets channel with ATLAS*,*Eur. Phys. J.***C 77**(2017) 264 [*Erratum ibid.***C 79**(2019) 19] [arXiv:1612.02577] [INSPIRE]. - [97]CMS collaboration,
*Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton*+*jets final states produced in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*Phys. Lett.***B 762**(2016) 512 [arXiv:1605.09047] [INSPIRE]. - [98]CMS collaboration,
*Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at*13*TeV*,*Phys. Rev.***D 95**(2017) 092001 [arXiv:1610.04191] [INSPIRE]. - [99]ATLAS collaboration,
*Determination of the parton distribution functions of the proton from ATLAS measurements of differential W and Z/γ*^{*}*and*\( t\overline{t} \)*cross sections*, ATL-PHYS-PUB-2018-017. - [100]CMS collaboration,
*Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at*\( \sqrt{s} \) = 13*TeV*,*Phys. Rev.***D 97**(2018) 112003 [arXiv:1803.08856] [INSPIRE]. - [101]CMS collaboration,
*Measurement of normalized differential*\( \mathrm{t}\overline{\mathrm{t}} \)*cross sections in the dilepton channel from pp collisions at*\( \sqrt{s} \) = 13*TeV*,*JHEP***04**(2018) 060 [arXiv:1708.07638] [INSPIRE]. - [102]CMS collaboration,
*Measurements of*\( t\overline{t} \)*cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at*\( \sqrt{s} \) = 13*TeV*,*Phys. Lett.***B 776**(2018) 355 [arXiv:1705.10141] [INSPIRE]. - [103]CMS collaboration,
*Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV*,*Eur. Phys. J.***C 78**(2018) 140 [arXiv:1710.10614] [INSPIRE]. - [104]CMS collaboration,
*Observation of top quark pairs produced in association with a vector boson in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*JHEP***01**(2016) 096 [arXiv:1510.01131] [INSPIRE]. - [105]CMS collaboration,
*Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV*,*JHEP***08**(2018) 011 [arXiv:1711.02547] [INSPIRE]. - [106]ATLAS collaboration,
*Measurement of the*\( t\overline{t}W \)*and*\( t\overline{t}Z \)*production cross sections in pp collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector*,*JHEP***11**(2015) 172 [arXiv:1509.05276] [INSPIRE]. - [107]ATLAS collaboration,
*Measurement of the*\( t\overline{t}Z \)*and*\( t\overline{t}W \)*production cross sections in multilepton final states using*3*.*2*fb*^{−1}*of pp collisions at*\( \sqrt{s} \) = 13*TeV with the ATLAS detector*,*Eur. Phys. J.***C 77**(2017) 40 [arXiv:1609.01599] [INSPIRE]. - [108]CMS collaboration,
*Observation of*\( \mathrm{t}\overline{\mathrm{t}}H \)*production*,*Phys. Rev. Lett.***120**(2018) 231801 [arXiv:1804.02610] [INSPIRE]. - [109]ATLAS collaboration,
*Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector*,*Phys. Lett.***B 784**(2018) 173 [arXiv:1806.00425] [INSPIRE]. - [110]CMS collaboration,
*Measurement of the t-channel single-top-quark production cross section and of the*|*V*_{tb}|*CKM matrix element in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*JHEP***06**(2014) 090 [arXiv:1403.7366] [INSPIRE]. - [111]CMS collaboration,
*Search for s channel single top quark production in pp collisions at*\( \sqrt{s} \) = 7*and*8*TeV*,*JHEP***09**(2016) 027 [arXiv:1603.02555] [INSPIRE]. - [112]ATLAS collaboration,
*Evidence for single top-quark production in the s-channel in proton-proton collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector using the Matrix Element Method*,*Phys. Lett.***B 756**(2016) 228 [arXiv:1511.05980] [INSPIRE]. - [113]ATLAS collaboration,
*Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at*8*TeV using data collected by the ATLAS detector*,*Eur. Phys. J.***C 77**(2017) 531 [arXiv:1702.02859] [INSPIRE]. - [114]ATLAS collaboration,
*Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at*\( \sqrt{s} \) = 13*TeV with the ATLAS detector*,*JHEP***04**(2017) 086 [arXiv:1609.03920] [INSPIRE]. - [115]CMS collaboration,
*Cross section measurement of t-channel single top quark production in pp collisions at*\( \sqrt{s} \) = 13*TeV*,*Phys. Lett.***B 772**(2017) 752 [arXiv:1610.00678] [INSPIRE]. - [116]
- [117]CMS collaboration,
*Measurement of the differential cross section for t-channel single-top-quark production at*\( \sqrt{s} \) = 13*TeV*, CMS-PAS-TOP-16-004. - [118]ATLAS collaboration,
*Measurement of the production cross-section of a single top quark in association with a W boson at*8*TeV with the ATLAS experiment*,*JHEP***01**(2016) 064 [arXiv:1510.03752] [INSPIRE]. - [119]CMS collaboration,
*Observation of the associated production of a single top quark and a W boson in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*Phys. Rev. Lett.***112**(2014) 231802 [arXiv:1401.2942] [INSPIRE]. - [120]ATLAS collaboration,
*Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at*\( \sqrt{s} \) = 13*TeV with ATLAS*,*JHEP***01**(2018) 063 [arXiv:1612.07231] [INSPIRE]. - [121]CMS collaboration,
*Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV*,*JHEP***10**(2018) 117 [arXiv:1805.07399] [INSPIRE]. - [122]CMS collaboration,
*Measurement of the associated production of a single top quark and a Z boson in pp collisions at*\( \sqrt{s} \) = 13*TeV*,*Phys. Lett.***B 779**(2018) 358 [arXiv:1712.02825] [INSPIRE]. - [123]ATLAS collaboration,
*Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at*13*TeV with the ATLAS detector*,*Phys. Lett.***B 780**(2018) 557 [arXiv:1710.03659] [INSPIRE]. - [124]M. Czakon, M.L. Mangano, A. Mitov and J. Rojo,
*Constraints on the gluon PDF from top quark pair production at hadron colliders*,*JHEP***07**(2013) 167 [arXiv:1303.7215] [INSPIRE].ADSGoogle Scholar - [125]M. Czakon, D. Heymes and A. Mitov,
*Dynamical scales for multi-TeV top-pair production at the LHC*,*JHEP***04**(2017) 071 [arXiv:1606.03350] [INSPIRE].ADSGoogle Scholar - [126]J. Gao and A.S. Papanastasiou,
*Top-quark pair-production and decay at high precision*,*Phys. Rev.***D 96**(2017) 051501 [arXiv:1705.08903] [INSPIRE].ADSGoogle Scholar - [127]T. Gleisberg et al.,
*Event generation with SHERPA 1.1*,*JHEP***02**(2009) 007 [arXiv:0811.4622] [INSPIRE]. - [128]R. Boughezal et al.,
*Color singlet production at NNLO in MCFM*,*Eur. Phys. J.***C 77**(2017) 7 [arXiv:1605.08011] [INSPIRE].ADSGoogle Scholar - [129]M. Czakon, D. Heymes and A. Mitov,
*fastNLO tables for NNLO top-quark pair differential distributions*, arXiv:1704.08551 [INSPIRE]. - [130]M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo,
*Pinning down the large-x gluon with NNLO top-quark pair differential distributions*,*JHEP***04**(2017) 044 [arXiv:1611.08609] [INSPIRE].ADSGoogle Scholar - [131]CMS collaboration,
*Measurements of*\( \mathrm{t}\overline{\mathrm{t}} \)*differential cross sections in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV using events containing two leptons*,*JHEP***02**(2019) 149 [arXiv:1811.06625] [INSPIRE]. - [132]ATLAS collaboration,
*Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at*\( \sqrt{s} \) = 13*TeV using the ATLAS detector*,*JHEP***11**(2017) 191 [arXiv:1708.00727] [INSPIRE]. - [133]ATLAS collaboration,
*Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at*\( \sqrt{s} \) = 13*TeV using the ATLAS detector*,*Eur. Phys. J.***C 77**(2017) 292 [arXiv:1612.05220] [INSPIRE]. - [134]ATLAS collaboration,
*Measurements of*\( t\overline{t} \)*differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at*\( \sqrt{s} \) = 13*TeV using the ATLAS detector*,*Phys. Rev.***D 98**(2018) 012003 [arXiv:1801.02052] [INSPIRE]. - [135]M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro,
*Top-pair production at the LHC through NNLO QCD and NLO EW*,*JHEP***10**(2017) 186 [arXiv:1705.04105] [INSPIRE].ADSGoogle Scholar - [136]M. Czakon et al.,
*Resummation for (boosted) top-quark pair production at NNLO+NNLL*’*in QCD*,*JHEP***05**(2018) 149 [arXiv:1803.07623] [INSPIRE].ADSGoogle Scholar - [137]ATLAS collaboration,
*Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays*, ATLAS-CONF-2013-033. - [138]CMS collaboration,
*Measurements of*\( t\overline{t} \)*spin correlations and top quark polarization using dilepton final states in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*Phys. Rev.***D 93**(2016) 052007 [arXiv:1601.01107] [INSPIRE]. - [139]ATLAS collaboration,
*Measurements of top-quark pair spin correlations in the eμ channel at*\( \sqrt{s} \) = 13*TeV using pp collisions in the ATLAS detector*, ATLAS-CONF-2018-027. - [140]ATLAS collaboration,
*Measurement of the*\( t\overline{t}\gamma \)*production cross section in proton-proton collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector*,*JHEP***11**(2017) 086 [arXiv:1706.03046] [INSPIRE]. - [141]ATLAS collaboration,
*Observation of top-quark pair production in association with a photon and measurement of the*\( t\overline{t}\gamma \)*production cross section in pp collisions at*\( \sqrt{s} \) = 7*TeV using the ATLAS detector*,*Phys. Rev.***D 91**(2015) 072007 [arXiv:1502.00586] [INSPIRE]. - [142]CMS collaboration,
*Measurement of the semileptonic*\( \mathrm{t}\overline{\mathrm{t}} \) +*γ production cross section in pp collisions at*\( \sqrt{s} \) = 8*TeV*,*JHEP***10**(2017) 006 [arXiv:1706.08128] [INSPIRE]. - [143]CMS collaboration,
*Measurement of*\( \mathrm{t}\overline{\mathrm{t}} \)*production with additional jet activity, including*b*quark jets, in the dilepton decay channel using pp collisions at*\( \sqrt{s} \) = 8*TeV*,*Eur. Phys. J.***C 76**(2016) 379 [arXiv:1510.03072] [INSPIRE]. - [144]C. Englert, M. Russell and C.D. White,
*Effective Field Theory in the top sector: do multijets help?*,*Phys. Rev.***D 99**(2019) 035019 [arXiv:1809.09744] [INSPIRE].ADSGoogle Scholar - [145]ATLAS collaboration,
*Measurements of fiducial and differential cross-sections of*\( t\overline{t} \)*production with additional heavy-flavour jets in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV with the ATLAS detector*, ATLAS-CONF-2018-029. - [146]ATLAS collaboration,
*Measurements of fiducial cross-sections for*\( t\overline{t} \)*production with one or two additional b-jets in pp collisions at*\( \sqrt{s} \) = 8*TeV using the ATLAS detector*,*Eur. Phys. J.***C 76**(2016) 11 [arXiv:1508.06868] [INSPIRE]. - [147]CMS collaboration,
*Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at*\( \sqrt{s} \) = 8*TeV*,*JHEP***11**(2014) 154 [arXiv:1409.7339] [INSPIRE]. - [148]CMS collaboration,
*Search for standard model production of four top quarks in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV*,*Phys. Lett.***B 772**(2017) 336 [arXiv:1702.06164] [INSPIRE]. - [149]ATLAS collaboration,
*Search for four-top-quark production in final states with one charged lepton and multiple jets using*3*.*2*fb*^{−1}*of proton-proton collisions at*\( \sqrt{s} \) = 13*TeV with the ATLAS detector at the LHC*, ATLAS-CONF-2016-020. - [150]ATLAS collaboration,
*Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at*\( \sqrt{s} \) = 13*TeV with the ATLAS detector*,*Phys. Rev.***D 99**(2019) 052009 [arXiv:1811.02305] [INSPIRE]. - [151]A. Giammanco,
*Single top quark production at the LHC*,*Rev. Phys.***1**(2016) 1 [arXiv:1511.06748] [INSPIRE].Google Scholar - [152]E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu,
*NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay*,*Phys. Rev.***D 94**(2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar - [153]ATLAS collaboration,
*Measurement of differential cross-sections of a single top quark produced in association with a W boson at*\( \sqrt{s} \) = 13*TeV with ATLAS*,*Eur. Phys. J.***C 78**(2018) 186 [arXiv:1712.01602] [INSPIRE]. - [154]CMS collaboration,
*Evidence for associated production of a single top quark and W boson in pp collisions at*\( \sqrt{s} \) = 7*TeV*,*Phys. Rev. Lett.***110**(2013) 022003 [arXiv:1209.3489] [INSPIRE]. - [155]S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White,
*Single-top hadroproduction in association with a W boson*,*JHEP***07**(2008) 029 [arXiv:0805.3067] [INSPIRE].ADSGoogle Scholar - [156]F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro,
*tWH associated production at the LHC*,*Eur. Phys. J.***C 77**(2017) 34 [arXiv:1607.05862] [INSPIRE].ADSGoogle Scholar - [157]CMS collaboration,
*Observation of single top quark production in association with a Z boson in proton-proton collisions at*\( \sqrt{s} \) = 13*TeV*, submitted to*Phys. Rev. Lett.*(2018) [arXiv:1812.05900] [INSPIRE]. - [158]R.D. Ball and A. Deshpande,
*The proton spin, semi-inclusive processes and measurements at a future Electron Ion Collider*, in*From My Vast Repertoire…: Guido Altarelli*’*s Legacy*, A. Levy, S. Forte and G. Ridolfi eds., pp. 205–226 (2019) [ https://doi.org/10.1142/9789813238053_0011] [arXiv:1801.04842] [INSPIRE]. - [159]NNPDF collaboration,
*Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties*,*JHEP***05**(2010) 075 [arXiv:0912.2276] [INSPIRE]. - [160]G. D’Agostini,
*Bayesian reasoning in data analysis: A critical introduction*, World Scientific (2003) [INSPIRE]. - [161]R. Boughezal, A. Guffanti, F. Petriello and M. Ubiali,
*The impact of the LHC Z-boson transverse momentum data on PDF determinations*,*JHEP***07**(2017) 130 [arXiv:1705.00343] [INSPIRE].ADSGoogle Scholar - [162]J. Rojo,
*Constraints on parton distributions and the strong coupling from LHC jet data*,*Int. J. Mod. Phys.***A 30**(2015) 1546005 [arXiv:1410.7728] [INSPIRE].ADSMathSciNetGoogle Scholar - [163]J.M. Campbell, J. Rojo, E. Slade and C. Williams,
*Direct photon production and PDF fits reloaded*,*Eur. Phys. J.***C 78**(2018) 470 [arXiv:1802.03021] [INSPIRE].ADSGoogle Scholar - [164]D. Kraft,
*A software package for sequential quadratic programming*, DFVLR, Köln (1988).zbMATHGoogle Scholar - [165]M. Farina, C. Mondino, D. Pappadopulo and J.T. Ruderman,
*New Physics from High Energy Tops*,*JHEP***01**(2019) 231 [arXiv:1811.04084] [INSPIRE].ADSGoogle Scholar