Advertisement

Spatially modulated and supersymmetric deformations of ABJM theory

  • Igal Arav
  • Jerome P. GauntlettEmail author
  • Matthew M. Roberts
  • Christopher Rosen
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We construct supersymmetric solutions of D = 11 supergravity, preserving 1/4 of the supersymmetry, that are holographically dual to ABJM theory which has been deformed by spatially varying mass terms depending on one of the two spatial directions. We show that the BPS equations reduce to the Helmholtz equation on the complex plane leading to rich classes of new solutions. In particular, the construction gives rise to infinite classes of supersymmetric boomerang RG flows, as well as generalising a known Janus solution.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Supersymmetric Gauge Theory Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.N. Pope and N.P. Warner, A Dielectric flow solution with maximal supersymmetry, JHEP 04 (2004) 011 [hep-th/0304132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Bena and N.P. Warner, A Harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.K. Kim and O.-K. Kwon, Janus ABJM Models with Mass Deformation, JHEP 08 (2018) 082 [arXiv:1806.06963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J.P. Gauntlett and C. Rosen, Susy Q and spatially modulated deformations of ABJM theory, JHEP 10 (2018) 066 [arXiv:1808.02488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows in M-theory with intermediate scaling, JHEP 07 (2017) 128 [arXiv:1705.03000] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Cvetič, H. Lü and C.N. Pope, Four-dimensional N = 4, SO(4) gauged supergravity from D = 11, Nucl. Phys. B 574 (2000) 761 [hep-th/9910252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows with intermediate conformal invariance, JHEP 04 (2018) 017 [arXiv:1712.08017] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A.S. Fokas and M. Zyskin, The Fundamental Differential Form and Boundary-Value Problems, Q. J. Mech. Appl. Math. 55 (2002) 457.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H.-C. Kim and S. Kim, Supersymmetric vacua of mass-deformed M2-brane theory, Nucl. Phys. B 839 (2010) 96 [arXiv:1001.3153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Conformal field theories in d = 4 with a helical twist, Phys. Rev. D 91 (2015) 066003 [arXiv:1412.3446] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    A. Donos, J.P. Gauntlett and O. Sosa-Rodriguez, Anisotropic plasmas from axion and dilaton deformations, JHEP 11 (2016) 002 [arXiv:1608.02970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A.W.W. Ludwig, M.P.A. Fisher, R. Shankar and G. Grinstein, Integer quantum hall transition: An alternative approach and exact results, Phys. Rev. B 50 (1994) 7526.ADSCrossRefGoogle Scholar
  26. [26]
    O. Vafek and A. Vishwanath, Dirac Fermions in Solids: From High-T c Cuprates and Graphene to Topological Insulators and Weyl Semimetals, Ann. Rev. Condensed Matter Phys. 5 (2014) 83 [arXiv:1306.2272] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Brey and H.A. Fertig, Emerging zero modes for graphene in a periodic potential, Phys. Rev. Lett. 103 (2009) 046809 [arXiv:0904.0540]ADSCrossRefGoogle Scholar
  28. [28]
    M. Barbier, P. Vasilopoulos and F.M. Peeters, Extra dirac points in the energy spectrum for superlattices on single-layer graphene, Phys. Rev. B 81 (2010) 075438 [arXiv:1002.1442].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Freedman and A. van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  30. [30]
    U. Gran, J. Gutowski and G. Papadopoulos, Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds, JHEP 06 (2008) 102 [arXiv:0802.1779] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv:1712.01849] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Halmagyi and S. Lal, On the on-shell: the action of AdS 4 black holes, JHEP 03 (2018) 146 [arXiv:1710.09580] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Igal Arav
    • 1
  • Jerome P. Gauntlett
    • 1
    Email author
  • Matthew M. Roberts
    • 1
  • Christopher Rosen
    • 1
  1. 1.Blackett LaboratoryImperial CollegeLondonU.K.

Personalised recommendations