Advertisement

The quantum swampland

  • Ulf DanielssonEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

In this paper we propose a quantum version of the swampland conjecture. We argue that quantum instabilities of de Sitter space discovered using field theoretical methods, are directly related to the difficulties in finding stringy de Sitter vacua.

Keywords

Cosmology of Theories beyond the SM Models of Quantum Gravity Flux compactifications Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  2. [2]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  3. [3]
    T. Banks, The Top 10500 Reasons Not to Believe in the Landscape, arXiv:1208.5715 [INSPIRE].
  4. [4]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].
  5. [5]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].
  6. [6]
    U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].
  8. [8]
    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C. Roupec and T. Wrase, de Sitter Extrema and the Swampland, Fortsch. Phys. 67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE].
  10. [10]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  11. [11]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Michel, E. Mintun, J. Polchinski, A. Puhm and P. Saad, Remarks on brane and antibrane dynamics, JHEP 09 (2015) 021 [arXiv:1412.5702] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near anti-branes, JHEP 01 (2016) 126 [arXiv:1507.01022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D. Cohen-Maldonado, J. Diaz, T. Van Riet and B. Vercnocke, From black holes to flux throats, Fortsch. Phys. 64 (2016) 317 [arXiv:1511.07453] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet and S.C. Vargas, Localised anti-branes in non-compact throats at zero and finite T , JHEP 02 (2015) 018 [arXiv:1409.0534] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    U.H. Danielsson and T. Van Riet, Fatal attraction: more on decaying anti-branes, JHEP 03 (2015) 087 [arXiv:1410.8476] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    U.H. Danielsson, F.F. Gautason and T. Van Riet, Unstoppable brane-flux decay of \( \overline{\mathrm{D}6} \) branes, JHEP 03 (2017) 141 [arXiv:1609.06529] [INSPIRE].
  18. [18]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev. D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].
  19. [19]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, Fortsch. Phys. 67 (2019) 1800086 [arXiv:1808.08971] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].
  22. [22]
    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 67 (2019) 1800071 [arXiv:1808.09427] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys. 67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].
  25. [25]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in String Theory, Fortsch. Phys. 67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].
  26. [26]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev. D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE].
  27. [27]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The Landscape, the Swampland and the Era of Precision Cosmology, Fortsch. Phys. 67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].
  29. [29]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  30. [30]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures and Cosmological Data, arXiv:1808.06424 [INSPIRE].
  31. [31]
    J. Blabäck, U. Danielsson and G. Dibitetto, Accelerated Universes from type IIA Compactifications, JCAP 03 (2014) 003 [arXiv:1310.8300] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter Cosmology from Decaying Anti-de Sitter Space, Phys. Rev. Lett. 121 (2018) 261301 [arXiv:1807.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].
  34. [34]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, JHEP 01 (2019) 145 [arXiv:1808.07498] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
  37. [37]
    S. Weinberg, Perturbative Calculations of Symmetry Breaking, Phys. Rev. D 7 (1973) 2887 [INSPIRE].
  38. [38]
    J. Iliopoulos, C. Itzykson and A. Martin, Functional Methods and Perturbation Theory, Rev. Mod. Phys. 47 (1975) 165 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities, Nucl. Phys. B 429 (1994) 589 [Erratum ibid. B 433 (1995) 255] [hep-th/9405188] [INSPIRE].
  40. [40]
    E.K. Akhmedov, Vacuum energy and relativistic invariance, hep-th/0204048 [INSPIRE].
  41. [41]
    J.F. Koksma and T. Prokopec, The Cosmological Constant and Lorentz Invariance of the Vacuum State, arXiv:1105.6296 [INSPIRE].
  42. [42]
    J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.C. David Marsh, The Swampland, Quintessence and the Vacuum Energy, Phys. Lett. B 789 (2019) 639 [arXiv:1809.00726] [INSPIRE].
  44. [44]
    N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincaré Phys. Theor. A 9 (1968) 109 [INSPIRE].
  45. [45]
    B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].
  46. [46]
    R. Floreanini, C.T. Hill and R. Jackiw, Functional Representation for the Isometries of de Sitter Space, Annals Phys. 175 (1987) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    U.H. Danielsson, Inflation, holography and the choice of vacuum in de Sitter space, JHEP 07 (2002) 040 [hep-th/0205227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].
  49. [49]
    U.H. Danielsson, A Note on inflation and transPlanckian physics, Phys. Rev. D 66 (2002) 023511 [hep-th/0203198] [INSPIRE].
  50. [50]
    U.H. Danielsson, On the consistency of de Sitter vacua, JHEP 12 (2002) 025 [hep-th/0210058] [INSPIRE].
  51. [51]
    J. Martin and R.H. Brandenberger, The TransPlanckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].
  52. [52]
    R. Easther, B.R. Greene, W.H. Kinney and G. Shiu, Inflation as a probe of short distance physics, Phys. Rev. D 64 (2001) 103502 [hep-th/0104102] [INSPIRE].
  53. [53]
    R. Brandenberger and P.-M. Ho, Noncommutative space-time, stringy space-time uncertainty principle and density fluctuations, Phys. Rev. D 66 (2002) 023517 [hep-th/0203119] [INSPIRE].
  54. [54]
    R.H. Brandenberger and J. Martin, Back-reaction and the trans-Planckian problem of inflation revisited, Phys. Rev. D 71 (2005) 023504 [hep-th/0410223] [INSPIRE].
  55. [55]
    A.M. Polyakov, de Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899] [INSPIRE].
  56. [56]
    A.M. Polyakov, Decay of Vacuum Energy, Nucl. Phys. B 834 (2010) 316 [arXiv:0912.5503] [INSPIRE].
  57. [57]
    D. Krotov and A.M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].
  58. [58]
    A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
  59. [59]
    E. Mottola, Particle Creation in de Sitter Space, Phys. Rev. D 31 (1985) 754 [INSPIRE].
  60. [60]
    P.R. Anderson and E. Mottola, Instability of global de Sitter space to particle creation, Phys. Rev. D 89 (2014) 104038 [arXiv:1310.0030] [INSPIRE].
  61. [61]
    P.R. Anderson and E. Mottola, Quantum vacuum instability ofeternalde Sitter space, Phys. Rev. D 89 (2014) 104039 [arXiv:1310.1963] [INSPIRE].
  62. [62]
    P.R. Anderson, E. Mottola and D.H. Sanders, Decay of the de Sitter Vacuum, Phys. Rev. D 97 (2018) 065016 [arXiv:1712.04522] [INSPIRE].
  63. [63]
    R. Brandenberger, L.L. Graef, G. Marozzi and G.P. Vacca, Backreaction of super-Hubble cosmological perturbations beyond perturbation theory, Phys. Rev. D 98 (2018) 103523 [arXiv:1807.07494] [INSPIRE].
  64. [64]
    T. Markkanen, De Sitter Stability and Coarse Graining, Eur. Phys. J. C 78 (2018) 97 [arXiv:1703.06898] [INSPIRE].
  65. [65]
    S. Brahma and M. Wali Hossain, Avoiding the string swampland in single-field inflation: Excited initial states, JHEP 03 (2019) 006 [arXiv:1809.01277] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    N.B. Narozhnyi, Quantum Processes in a Constant Uniform Electric Field, Zh. Eksp. Teor. Fiz. 54 (1968) 676 [Sov. Phys. JETP 27 (1968) 360].Google Scholar
  67. [67]
    N.I. Nikishov, Pair Production by a Constant External Field, Zh. Eksp. Teor. Fiz. 57 (1970) 1210 [Sov. Phys. JETP 30 (1970) 660].Google Scholar
  68. [68]
    N.B. Narozhnyi and A.I. Nikishov, The Simplist processes in the pair creating electric field, Yad. Fiz. 11 (1970) 1072 [Sov. J. Nucl. Phys. 11 (1970) 596] [INSPIRE].
  69. [69]
    E.S. Fradkin, D.M. Gitman and S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum, Springer-Verlag, Berlin (1991) [INSPIRE].
  70. [70]
    S.P. Gavrilov and D.M. Gitman, Vacuum instability in external fields, Phys. Rev. D 53 (1996) 7162 [hep-th/9603152] [INSPIRE].
  71. [71]
    T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].
  72. [72]
    U.H. Danielsson, Transplanckian energy production and slow roll inflation, Phys. Rev. D 71 (2005) 023516 [hep-th/0411172] [INSPIRE].
  73. [73]
    U.H. Danielsson, Inflation as a probe of new physics, JCAP 03 (2006) 014 [hep-th/0511273] [INSPIRE].
  74. [74]
    A.A. Starobinsky and I.I. Tkachev, Trans-Planckian particle creation in cosmology and ultra-high energy cosmic rays, JETP Lett. 76 (2002) 235 [astro-ph/0207572] [INSPIRE].
  75. [75]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].
  76. [76]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys. 67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institutionen för fysik och astronomiUniversity of UppsalaUppsalaSweden

Personalised recommendations