Advertisement

Integrable asymmetric λ-deformations

  • Sibylle DriezenEmail author
  • Alexander Sevrin
  • Daniel C. Thompson
Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

We construct integrable deformations of the λ-type for asymmetrically gauged WZW models. This is achieved by a modification of the Sfetsos gauging procedure to account for a possible automorphism that is allowed in G/G models. We verify classical integrability, derive the one-loop beta function for the deformation parameter and give the construction of integrable D-brane configurations in these models. As an application, we detail the case of the λ-deformation of the cigar geometry corresponding to the axial gauged SL(2, R)/U(1) theory at large k. Here we also exhibit a range of both A-type and B-type integrability preserving D-brane configurations.

Keywords

D-branes Integrable Field Theories Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 Superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
  4. [4]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B 59 (1975) 79 [INSPIRE].
  6. [6]
    K. Gawedzki and A. Kupiainen, G/h Conformal Field Theory from Gauged WZW Model, Phys. Lett. B 215 (1988) 119 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Karabali, Q.-H. Park, H.J. Schnitzer and Z. Yang, A GKO Construction Based on a Path Integral Formulation of Gauged Wess-Zumino-Witten Actions, Phys. Lett. B 216 (1989) 307 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Eichenherr and M. Forger, On the Dual Symmetry of the Nonlinear σ-models, Nucl. Phys. B 155 (1979) 381 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
  11. [11]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Osten and S.J. van Tongeren, Abelian Yang-Baxter deformations and TsT transformations, Nucl. Phys. B 915 (2017) 184 [arXiv:1608.08504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Borsato and L. Wulff, Marginal deformations of WZW models and the classical Yang-Baxter equation, arXiv:1812.07287 [INSPIRE].
  16. [16]
    K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys. B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, Integrable Deformations of Strings on Symmetric Spaces, JHEP 11 (2014) 009 [arXiv:1407.2840] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS 5 × S 5 Superstring, J. Phys. A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].zbMATHGoogle Scholar
  19. [19]
    C. Appadu and T.J. Hollowood, β-function of k deformed AdS 5 × S 5 string theory, JHEP 11 (2015) 095 [arXiv:1507.05420] [INSPIRE].
  20. [20]
    R. Borsato, A.A. Tseytlin and L. Wulff, Supergravity background of λ-deformed model for AdS 2 × S 2 supercoset, Nucl. Phys. B 905 (2016) 264 [arXiv:1601.08192] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    Y. Chervonyi and O. Lunin, Supergravity background of the λ-deformed AdS 3 × S 3 supercoset, Nucl. Phys. B 910 (2016) 685 [arXiv:1606.00394] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP 10 (2016) 045 [arXiv:1608.03570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    K. Sfetsos and D.C. Thompson, Spacetimes for λ-deformations, JHEP 12 (2014) 164 [arXiv:1410.1886] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Demulder, K. Sfetsos and D.C. Thompson, Integrable λ-deformations: Squashing Coset CFTs and AdS 5 × S 5, JHEP 07 (2015) 019 [arXiv:1504.02781] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P.H. Ginsparg and F. Quevedo, Strings on curved space-times: Black holes, torsion and duality, Nucl. Phys. B 385 (1992) 527 [hep-th/9202092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    I. Bars and K. Sfetsos, Generalized duality and singular strings in higher dimensions, Mod. Phys. Lett. A 7 (1992) 1091 [hep-th/9110054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    G. Georgiou, K. Sfetsos and K. Siampos, λ-Deformations of left-right asymmetric CFTs, Nucl. Phys. B 914 (2017) 623 [arXiv:1610.05314] [INSPIRE].
  29. [29]
    G. Georgiou and K. Sfetsos, A new class of integrable deformations of CFTs, JHEP 03 (2017) 083 [arXiv:1612.05012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    G. Georgiou and K. Sfetsos, The most general λ-deformation of CFTs and integrability, JHEP 03 (2019) 094 [arXiv:1812.04033] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Roček, K. Schoutens and A. Sevrin, Off-shell WZW models in extended superspace, Phys. Lett. B 265 (1991) 303 [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    A.A. Tseytlin, Effective action of gauged WZW model and exact string solutions, Nucl. Phys. B 399 (1993) 601 [hep-th/9301015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    I. Bars and K. Sfetsos, Exact effective action and space-time geometry n gauged WZW models, Phys. Rev. D 48 (1993) 844 [hep-th/9301047] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Giveon, Target space duality and stringy black holes, Mod. Phys. Lett. A 6 (1991) 2843 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    E.B. Kiritsis, Duality in gauged WZW models, Mod. Phys. Lett. A 6 (1991) 2871 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    V. Kazakov, I.K. Kostov and D. Kutasov, A Matrix model for the two-dimensional black hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    V.A. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, unpublished.Google Scholar
  43. [43]
    Y. Hikida and V. Schomerus, The FZZ-Duality Conjecture: A Proof, JHEP 03 (2009) 095 [arXiv:0805.3931] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Giveon, N. Itzhaki and D. Kutasov, Stringy Horizons, JHEP 06 (2015) 064 [arXiv:1502.03633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Driezen, A. Sevrin and D.C. Thompson, D-branes in λ-deformations, JHEP 09 (2018) 015 [arXiv:1806.10712] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Fotopoulos, Semiclassical description of D-branes in SL(2)/U(1) gauged WZW model, Class. Quant. Grav. 20 (2003) S465 [hep-th/0304015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Ribault and V. Schomerus, Branes in the 2 − D black hole, JHEP 02 (2004) 019 [hep-th/0310024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    A. Fotopoulos, V. Niarchos and N. Prezas, D-branes and extended characters in SL(2, ℝ)/U(1), Nucl. Phys. B 710 (2005) 309 [hep-th/0406017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Israel, A. Pakman and J. Troost, D-branes in N = 2 Liouville theory and its mirror, Nucl. Phys. B 710 (2005) 529 [hep-th/0405259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Ribault, Discrete D-branes in AdS 3 and in the 2 − D black hole, JHEP 08 (2006) 015 [hep-th/0512238] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A.M. Polyakov and P.B. Wiegmann, Goldstone Fields in Two-Dimensions with Multivalued Actions, Phys. Lett. B 141 (1984) 223 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    P. Bowcock, Canonical Quantization of the Gauged Wess-Zumino Model, Nucl. Phys. B 316 (1989) 80 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations and their relation, Nucl. Phys. B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    V.E. Zakharov and A.V. Mikhailov, Relativistically Invariant Two-Dimensional Models in Field Theory Integrable by the Inverse Problem Technique (In Russian), Sov. Phys. JETP 47 (1978) 1017 [INSPIRE].
  56. [56]
    G. Itsios, K. Sfetsos and K. Siampos, The all-loop non-Abelian Thirring model and its RG flow, Phys. Lett. B 733 (2014) 265 [arXiv:1404.3748] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    K. Sfetsos and K. Siampos, Gauged WZW-type theories and the all-loop anisotropic non-Abelian Thirring model, Nucl. Phys. B 885 (2014) 583 [arXiv:1405.7803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    I.V. Cherednik, Factorizing Particles on a Half Line and Root Systems, Theor. Math. Phys. 61 (1984) 977 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    E.K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A 21 (1988) 2375 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with Boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2003).Google Scholar
  62. [62]
    J.D. Lykken, Finitely Reducible Realizations of the N = 2 Superconformal Algebra, Nucl. Phys. B 313 (1989) 473 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    I. Bakas and E. Kiritsis, Beyond the large N limit: Nonlinear W(infinity) as symmetry of the SL(2, ℝ)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [hep-th/9109029] [INSPIRE].
  64. [64]
    V.A. Fateev and A.B. Zamolodchikov, Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].Google Scholar
  65. [65]
    D. Israel, C. Kounnas and M.P. Petropoulos, Superstrings on NS5 backgrounds, deformed AdS 3 and holography, JHEP 10 (2003) 028 [hep-th/0306053] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Bardakci, M.J. Crescimanno and E. Rabinovici, Parafermions From Coset Models, Nucl. Phys. B 344 (1990) 344 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    P. Marios Petropoulos and K. Sfetsos, NS5-branes on an ellipsis and novel marginal deformations with parafermions, JHEP 01 (2006) 167 [hep-th/0512251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, A Canonical approach to duality transformations, Phys. Lett. B 336 (1994) 183 [hep-th/9406206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    V.A. Fateev and A.B. Zamolodchikov, Integrable perturbations of Z(N) parafermion models and O(3) σ-model, Phys. Lett. B 271 (1991) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    C. Bachas and M. Petropoulos, Anti-de Sitter D-branes, JHEP 02 (2001) 025 [hep-th/0012234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP 06 (2002) 028 [hep-th/0203161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    V.A. Fateev, Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality, SIGMA 13 (2017) 080 [arXiv:1705.06424] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  75. [75]
    T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, S-Matrices and Quantum Group Symmetry of k-Deformed σ-models, J. Phys. A 49 (2016) 465201 [arXiv:1506.06601] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    C. Appadu, T.J. Hollowood and D. Price, Quantum Inverse Scattering and the Lambda Deformed Principal Chiral Model, J. Phys. A 50 (2017) 305401 [arXiv:1703.06699] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    K. Sfetsos, Branes for Higgs phases and exact conformal field theories, JHEP 01 (1999) 015 [hep-th/9811167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    D. Israel, C. Kounnas, A. Pakman and J. Troost, The Partition function of the supersymmetric two-dimensional black hole and little string theory, JHEP 06 (2004) 033 [hep-th/0403237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    E.J. Martinec and S. Massai, String Theory of Supertubes, JHEP 07 (2018) 163 [arXiv:1705.10844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    E.J. Martinec, S. Massai and D. Turton, String dynamics in NS5-F1-P geometries, JHEP 09 (2018) 031 [arXiv:1803.08505] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    J.M. Figueroa-O’Farrill and S. Stanciu, D-brane charge, flux quantization and relative (co)homology, JHEP 01 (2001) 006 [hep-th/0008038] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay InstitutesBrusselsBelgium

Personalised recommendations