# Time evolution of complexity: a critique of three methods

- 35 Downloads

## Abstract

In this work, we propose a testing procedure to distinguish between the different approaches for computing complexity. Our test does not require a direct comparison between the approaches and thus avoids the issue of choice of gates, basis, etc. The proposed testing procedure employs the information-theoretic measures Loschmidt echo and Fidelity; the idea is to investigate the sensitivity of the complexity (derived from the different approaches) to the evolution of states. We discover that only circuit complexity obtained directly from the wave function is sensitive to time evolution, leaving us to claim that it surpasses the other approaches. We also demonstrate that circuit complexity displays a universal behaviour — the complexity is proportional to the number of distinct Hamiltonian evolutions that act on a reference state. Due to this fact, for a given number of Hamiltonians, we can always find the combination of states that provides the maximum complexity; consequently, other combinations involving a smaller number of evolutions will have less than maximum complexity and, hence, will have resources. Finally, we explore the evolution of complexity in non-local theories; we demonstrate the growth of complexity is sustained over a longer period of time as compared to a local theory.

## Keywords

Effective Field Theories Lattice Quantum Field Theory AdS-CFT Correspondence Black Holes in String Theory## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]S. Ryu and T. Takayanagi,
*Holographic derivation of entanglement entropy from AdS/CFT*,*Phys. Rev. Lett.***96**(2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [2]S. Ryu and T. Takayanagi,
*Aspects of Holographic Entanglement Entropy*,*JHEP***08**(2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [3]M. Van Raamsdonk,
*Building up spacetime with quantum entanglement*,*Gen. Rel. Grav.***42**(2010) 2323 [*Int. J. Mod. Phys.***D 19**(2010) 2429] [arXiv:1005.3035] [INSPIRE]. - [4]M. Rangamani and T. Takayanagi,
*Holographic Entanglement Entropy*,*Lect. Notes Phys.***931**(2017) pp.1 [arXiv:1609.01287] [INSPIRE]. - [5]T. Hartman and J. Maldacena,
*Time Evolution of Entanglement Entropy from Black Hole Interiors*,*JHEP***05**(2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]J. Maldacena and L. Susskind,
*Cool horizons for entangled black holes*,*Fortsch. Phys.***61**(2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [7]L. Susskind,
*Computational Complexity and Black Hole Horizons*,*Fortsch. Phys.***64**(2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]L. Susskind,
*Entanglement is not enough*,*Fortsch. Phys.***64**(2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [9]
- [10]D. Stanford and L. Susskind,
*Complexity and Shock Wave Geometries*,*Phys. Rev.***D 90**(2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar - [11]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Holographic Complexity Equals Bulk Action?*,*Phys. Rev. Lett.***116**(2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar - [12]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Complexity, action and black holes*,*Phys. Rev.***D 93**(2016) 086006 [arXiv:1512.04993] [INSPIRE].ADSMathSciNetGoogle Scholar - [13]J.L.F. Barbon and E. Rabinovici,
*Holographic complexity and spacetime singularities*,*JHEP***01**(2016) 084 [arXiv:1509.09291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]M. Alishahiha,
*Holographic Complexity*,*Phys. Rev.***D 92**(2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar - [15]W. Chemissany and T.J. Osborne,
*Holographic fluctuations and the principle of minimal complexity*,*JHEP***12**(2016) 055 [arXiv:1605.07768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [16]R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng,
*Action growth for AdS black holes*,*JHEP***09**(2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]A.R. Brown, L. Susskind and Y. Zhao,
*Quantum Complexity and Negative Curvature*,*Phys. Rev.***D 95**(2017) 045010 [arXiv:1608.02612] [INSPIRE].ADSMathSciNetGoogle Scholar - [18]L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin,
*Gravitational action with null boundaries*,*Phys. Rev.***D 94**(2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSMathSciNetGoogle Scholar - [19]R.-Q. Yang,
*Strong energy condition and complexity growth bound in holography*,*Phys. Rev.***D 95**(2017) 086017 [arXiv:1610.05090] [INSPIRE].ADSMathSciNetGoogle Scholar - [20]S. Chapman, H. Marrochio and R.C. Myers,
*Complexity of Formation in Holography*,*JHEP***01**(2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [21]D. Carmi, R.C. Myers and P. Rath,
*Comments on Holographic Complexity*,*JHEP***03**(2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [22]P. Rath,
*Holographic Complexity*, Perimeter Scholars International essay (unpublished), (2016).Google Scholar - [23]A. Reynolds and S.F. Ross,
*Divergences in Holographic Complexity*,*Class. Quant. Grav.***34**(2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]A.R. Brown and L. Susskind,
*Second law of quantum complexity*,*Phys. Rev.***D 97**(2018) 086015 [arXiv:1701.01107] [INSPIRE].ADSMathSciNetGoogle Scholar - [25]Y. Zhao,
*Complexity and Boost Symmetry*,*Phys. Rev.***D 98**(2018) 086011 [arXiv:1702.03957] [INSPIRE].ADSGoogle Scholar - [26]M. Flory,
*A complexity/fidelity susceptibility g-theorem for AdS*_{3}*/BCFT*_{2},*JHEP***06**(2017) 131 [arXiv:1702.06386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]M. Alishahiha and A. Faraji Astaneh,
*Holographic Fidelity Susceptibility*,*Phys. Rev.***D 96**(2017) 086004 [arXiv:1705.01834] [INSPIRE].ADSMathSciNetGoogle Scholar - [28]A. Reynolds and S.F. Ross,
*Complexity in de Sitter Space*,*Class. Quant. Grav.***34**(2017) 175013 [arXiv:1706.03788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [29]D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita,
*On the Time Dependence of Holographic Complexity*,*JHEP***11**(2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [30]J. Couch, S. Eccles, W. Fischler and M.-L. Xiao,
*Holographic complexity and noncommutative gauge theory*,*JHEP***03**(2018) 108 [arXiv:1710.07833] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [31]R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*Comparison of holographic and field theoretic complexities for time dependent thermofield double states*,*JHEP***02**(2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]R. Abt et al.,
*Topological Complexity in AdS*_{3}*/CFT*_{2},*Fortsch. Phys.***66**(2018) 1800034 [arXiv:1710.01327] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [33]M. Moosa,
*Evolution of Complexity Following a Global Quench*,*JHEP***03**(2018) 031 [arXiv:1711.02668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [34]M. Moosa,
*Divergences in the rate of complexification*,*Phys. Rev.***D 97**(2018) 106016 [arXiv:1712.07137] [INSPIRE].ADSMathSciNetGoogle Scholar - [35]B. Swingle and Y. Wang,
*Holographic Complexity of Einstein-Maxwell-Dilaton Gravity*,*JHEP***09**(2018) 106 [arXiv:1712.09826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]A.P. Reynolds and S.F. Ross,
*Complexity of the AdS Soliton*,*Class. Quant. Grav.***35**(2018) 095006 [arXiv:1712.03732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang,
*Holographic complexity is nonlocal*,*JHEP***02**(2018) 072 [arXiv:1801.01137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [38]Y.-S. An and R.-H. Peng,
*Effect of the dilaton on holographic complexity growth*,*Phys. Rev.***D 97**(2018) 066022 [arXiv:1801.03638] [INSPIRE].ADSMathSciNetGoogle Scholar - [39]S. Bolognesi, E. Rabinovici and S.R. Roy,
*On Some Universal Features of the Holographic Quantum Complexity of Bulk Singularities*,*JHEP***06**(2018) 016 [arXiv:1802.02045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [40]B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang,
*Holographic subregion complexity under a thermal quench*,*JHEP***07**(2018) 034 [arXiv:1803.06680] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [41]S. Chapman, H. Marrochio and R.C. Myers,
*Holographic complexity in Vaidya spacetimes. Part I*,*JHEP***06**(2018) 046 [arXiv:1804.07410] [INSPIRE]. - [42]C.A. Agón, M. Headrick and B. Swingle,
*Subsystem Complexity and Holography*,*JHEP***02**(2019) 145 [arXiv:1804.01561] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [43]R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe,
*Holographic Subregion Complexity from Kinematic Space*,*JHEP***01**(2019) 012 [arXiv:1805.10298] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [44]K. Hashimoto, N. Iizuka and S. Sugishita,
*Thoughts on Holographic Complexity and its Basis-dependence*,*Phys. Rev.***D 98**(2018) 046002 [arXiv:1805.04226] [INSPIRE].ADSGoogle Scholar - [45]S. Chapman, H. Marrochio and R.C. Myers,
*Holographic complexity in Vaidya spacetimes. Part II*,*JHEP***06**(2018) 114 [arXiv:1805.07262] [INSPIRE]. - [46]M. Flory and N. Miekley,
*Complexity change under conformal transformations in AdS*_{3}*/CFT*_{2}, arXiv:1806.08376 [INSPIRE]. - [47]J. Couch, S. Eccles, T. Jacobson and P. Nguyen,
*Holographic Complexity and Volume*,*JHEP***11**(2018) 044 [arXiv:1807.02186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [48]S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas,
*Holographic complexity of anisotropic black branes*, arXiv:1808.00067 [INSPIRE]. - [49]S. Mahapatra and P. Roy,
*On the time dependence of holographic complexity in a dynamical Einstein-dilaton model*,*JHEP***11**(2018) 138 [arXiv:1808.09917] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [50]M. Ghodrati,
*Complexity growth rate during phase transitions*,*Phys. Rev.***D 98**(2018) 106011 [arXiv:1808.08164] [INSPIRE].ADSGoogle Scholar - [51]Y. Ling, Y. Liu and C.-Y. Zhang,
*Holographic Subregion Complexity in Einstein-Born-Infeld theory*,*Eur. Phys. J.***C 79**(2019) 194 [arXiv:1808.10169] [INSPIRE].ADSCrossRefGoogle Scholar - [52]M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar,
*Subregion Action and Complexity*, arXiv:1809.06031 [INSPIRE]. - [53]J. Jiang,
*Action growth rate for a higher curvature gravitational theory*,*Phys. Rev.***D 98**(2018) 086018 [arXiv:1810.00758] [INSPIRE].ADSGoogle Scholar - [54]R. Jefferson and R.C. Myers,
*Circuit complexity in quantum field theory*,*JHEP***10**(2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [55]S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski,
*Toward a Definition of Complexity for Quantum Field Theory States*,*Phys. Rev. Lett.***120**(2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [56]K. Hashimoto, N. Iizuka and S. Sugishita,
*Time evolution of complexity in Abelian gauge theories*,*Phys. Rev.***D 96**(2017) 126001 [arXiv:1707.03840] [INSPIRE].ADSMathSciNetGoogle Scholar - [57]R.-Q. Yang,
*Complexity for quantum field theory states and applications to thermofield double states*,*Phys. Rev.***D 97**(2018) 066004 [arXiv:1709.00921] [INSPIRE].ADSMathSciNetGoogle Scholar - [58]R. Khan, C. Krishnan and S. Sharma,
*Circuit Complexity in Fermionic Field Theory*,*Phys. Rev.***D 98**(2018) 126001 [arXiv:1801.07620] [INSPIRE].ADSGoogle Scholar - [59]R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*Principles and symmetries of complexity in quantum field theory*,*Eur. Phys. J.***C 79**(2019) 109 [arXiv:1803.01797] [INSPIRE].ADSCrossRefGoogle Scholar - [60]L. Hackl and R.C. Myers,
*Circuit complexity for free fermions*,*JHEP***07**(2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [61]D.W.F. Alves and G. Camilo,
*Evolution of complexity following a quantum quench in free field theory*,*JHEP***06**(2018) 029 [arXiv:1804.00107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [62]J.M. Magán,
*Black holes, complexity and quantum chaos*,*JHEP***09**(2018) 043 [arXiv:1805.05839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [63]
- [64]H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson,
*Complexity as a novel probe of quantum quenches: universal scalings and purifications*,*Phys. Rev. Lett.***122**(2019) 081601 [arXiv:1807.07075] [INSPIRE].ADSCrossRefGoogle Scholar - [65]M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan,
*Circuit Complexity for Coherent States*,*JHEP***10**(2018) 011 [arXiv:1807.07677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [66]A. Bhattacharyya, A. Shekar and A. Sinha,
*Circuit complexity in interacting QFTs and RG flows*,*JHEP***10**(2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [67]R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*More on complexity of operators in quantum field theory*,*JHEP***03**(2019) 161 [arXiv:1809.06678] [INSPIRE].CrossRefGoogle Scholar - [68]J. Jiang, J. Shan and J. Yang,
*Circuit complexity for free Fermion with a mass quench*, arXiv:1810.00537 [INSPIRE]. - [69]T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan,
*Post-Quench Evolution of Distance and Uncertainty in a Topological System: Complexity, Entanglement and Revivals*, arXiv:1811.05985 [INSPIRE]. - [70]C. Bennett,
*Logical reversibility of computation*,*IBM J. Res. Dev.***17**(1973) 525.MathSciNetCrossRefzbMATHGoogle Scholar - [71]A. Berthiaume and G. Brassard,
*The quantum challenge to structural complexity theory*, proceedings of*7th IEEE Conference on Structure in Complexity Theory*, (1992).Google Scholar - [72]E. Bernstein and U. Vazirani,
*Quantum complexity theory*, proceedings of*ACM Symposium on Theory of Computing*, (1993).Google Scholar - [73]
- [74]S. Arora and B. Barak,
*Computational Complexity: A Modern Approach*, Cambridge University Press, (2009).Google Scholar - [75]C. Moore and S. Mertens,
*The Nature of Computation*, Oxford University Press, (2011).Google Scholar - [76]S. Aaronson,
*The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes*, arXiv:1607.05256 [INSPIRE]. - [77]J. Watrous,
*Quantum computational complexity*, in*Encyclopedia of complexity and systems science*, Springer, (2009), pp. 7174–7201.Google Scholar - [78]T.J. Osborne,
*Hamiltonian complexity*,*Rept. Prog. Phys.***75**(2012) 022001.ADSMathSciNetCrossRefGoogle Scholar - [79]S. Gharibian et al.,
*Quantum hamiltonian complexity*,*Foundations and Trends in Theoretical Computer Science***10**(2015) 159.MathSciNetCrossRefzbMATHGoogle Scholar - [80]R. Raz and A. Tal,
*Oracle Separation of BQP and PH*, Electronic Colloquium on Computational Complexity, Report No. 107 (2018).Google Scholar - [81]S. Aaronson,
*BQP and the polynomial hierarchy*, in*Proceedings of the 42nd ACM symposium on Theory of computing*—*STOC*’*10*STOC 2010: 141–150.Google Scholar - [82]S. Aaronson and A. Ambainis,
*Forrelation: A Problem that Optimally Separates Quantum from Classical Computing*, in*Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing*—*STOC*’*15*STOC 2015: 307–316.Google Scholar - [83]C.H. Bennett and J. Gill,
*Relative to a Random Oracle A, P*^{A}≠*NP*^{A}≠*co-NP*^{A}*with Probability 1*,*SIAM J. Comput.***10**(1981) 96.MathSciNetCrossRefGoogle Scholar - [84]S.P. Jordan, K.S.M. Lee and J. Preskill,
*Quantum Algorithms for Quantum Field Theories*,*Science***336**(2012) 1130 [arXiv:1111.3633] [INSPIRE].ADSCrossRefGoogle Scholar - [85]S.P. Jordan, K.S.M. Lee and J. Preskill,
*Quantum Computation of Scattering in Scalar Quantum Field Theories*, arXiv:1112.4833 [INSPIRE]. - [86]S.P. Jordan, H. Krovi, K.S.M. Lee and J. Preskill,
*BQP-completeness of Scattering in Scalar Quantum Field Theory*, arXiv:1703.00454 [INSPIRE]. - [87]M.A. Nielsen,
*A geometric approach to quantum circuit lower bounds*, quant-ph/0502070. - [88]M.A. Nielsen, M.R. Dowling, M. Gu and A.M. Doherty,
*Quantum Computation as Geometry*,*Science***311**(2006) 1133 [quant-ph/0603161]. - [89]M.A. Nielsen and M.R. Dowling,
*The geometry of quantum computation*, quant-ph/0701004. - [90]P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe,
*Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories*,*Phys. Rev. Lett.***119**(2017) 071602 [arXiv:1703.00456] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [91]P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe,
*Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT*,*JHEP***11**(2017) 097 [arXiv:1706.07056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [92]B. Czech,
*Einstein Equations from Varying Complexity*,*Phys. Rev. Lett.***120**(2018) 031601 [arXiv:1706.00965] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [93]J. Molina-Vilaplana and A. Del Campo,
*Complexity Functionals and Complexity Growth Limits in Continuous MERA Circuits*,*JHEP***08**(2018) 012 [arXiv:1803.02356] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [94]A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi,
*Path-Integral Complexity for Perturbed CFTs*,*JHEP***07**(2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [95]T. Takayanagi,
*Holographic Spacetimes as Quantum Circuits of Path-Integrations*,*JHEP***12**(2018) 048 [arXiv:1808.09072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [96]T. Gorin, T. Prosen, T.H. Seligman and M. Znidaric,
*Dynamics of Loschmidt echoes and fidelity decay*,*Phys. Rept.***435**(2006) 33.ADSCrossRefGoogle Scholar - [97]A. Goussev, R.A. Jalabert, H.M. Pastawski and D. Wisniacki,
*Loschmidt Echo*,*Scholarpedia***7**(2012) 11687 [arXiv:1206.6348].CrossRefGoogle Scholar - [98]W.P. Su, J.R. Schrieffer and A.J. Heeger,
*Solitons in polyacetylene*,*Phys. Rev. Lett.***42**(1979) 1698 [INSPIRE].ADSCrossRefGoogle Scholar - [99]C.L. Kane and T.C. Lubensky,
*Topological boundary modes in isostatic lattices*,*Nature Phys.***10**(2014) 39.ADSCrossRefGoogle Scholar - [100]A.M. Perelomov,
*Generalized Coherent States and Their Applications*, Springer, Berlin, Heidelberg, Germany, (1986).CrossRefzbMATHGoogle Scholar - [101]I. Bengtsson and K. Zyczkowski,
*Geometry of Quantum States: An Introduction to Quantum Entanglement*, Cambridge University Press, (2006).Google Scholar - [102]F.M. Cucchietti,
*The Loschmidt echo in classically chaotic systems: Quantum chaos, irreversibility and decoherence*, Ph.D. Thesis, quant-ph/0410121. - [103]D. Petz,
*An Invitation to the Algebra of Canonical Commutation Relations*, Leuven University Press, Leuven, Belgium, (1990).zbMATHGoogle Scholar - [104]B. Swingle and N. Yunger Halpern,
*Resilience of scrambling measurements*,*Phys. Rev.***A 97**(2018) 062113 [arXiv:1802.01587] [INSPIRE].ADSCrossRefGoogle Scholar - [105]B. Swingle, G. Bentsen, M. Schleier-Smith and P. Hayden,
*Measuring the scrambling of quantum information*,*Phys. Rev.***A 94**(2016) 040302 [arXiv:1602.06271] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [106]N. Shiba and T. Takayanagi,
*Volume Law for the Entanglement Entropy in Non-local QFTs*,*JHEP***02**(2014) 033 [arXiv:1311.1643] [INSPIRE].ADSCrossRefGoogle Scholar - [107]T. Ali, A. Bhattacharyya, S.S. Haque, E. Kim and N. Moynihan,
*Complexity vs entanglement growth: local vs non-local theory*, in progress.Google Scholar - [108]A. Milsted, J. Haegeman and T.J. Osborne,
*Matrix product states and variational methods applied to critical quantum field theory*,*Phys. Rev.***D 88**(2013) 085030 [arXiv:1302.5582] [INSPIRE].ADSGoogle Scholar - [109]A. Bhattacharyya, L. Cheng, L.-Y. Hung, S. Ning and Z. Yang,
*Notes on the Causal Structure in a Tensor Network*, arXiv:1805.03071 [INSPIRE]. - [110]
- [111]
- [112]Q. Hu, A. Franco-Rubio and G. Vidal,
*Continuous tensor network renormalization for quantum fields*, arXiv:1809.05176 [INSPIRE].