Advertisement

General fluctuations of the type II pure spinor string on curved backgrounds

  • Osvaldo ChandiaEmail author
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

The general fluctuations, in the form of vertex operators, for the type II superstring in the pure spinor formalism are considered. We review the construction of these vertex operators in flat space-time. We then review the type II superstrings in curved background in the pure spinor formalism to finally construct the vertex operators on a generic type II supergravity background.

Keywords

Conformal Field Models in String Theory Supergravity Models Superspaces Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    O. Chandía and B.C. Vallilo, Conformal invariance of the pure spinor superstring in a curved background, JHEP 04 (2004) 041 [hep-th/0401226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    O.A. Bedoya and O. Chandía, One-loop Conformal Invariance of the Type II Pure Spinor Superstring in a Curved Background, JHEP 01 (2007) 042 [hep-th/0609161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Chandía and M. Tonin, BRST anomaly and superspace constraints of the pure spinor heterotic string in a curved background, JHEP 09 (2007) 016 [arXiv:0707.0654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Berkovits and O. Chandía, Superstring vertex operators in an AdS5 × S5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    O. Chandía and B.C. Vallilo, Vertex operators for the plane wave pure spinor string, JHEP 10 (2018) 088 [arXiv:1807.05149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Chandía, General fluctuations of the heterotic pure spinor string on curved backgrounds, JHEP 02 (2019) 116 [arXiv:1812.05124] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    O. Chandía and B.C. Vallilo, A superfield realization of the integrated vertex operator in an AdS 5 × S 5 background, JHEP 10 (2017) 178 [arXiv:1709.05517] [INSPIRE].
  10. [10]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    O. Chandía, The b Ghost of the Pure Spinor Formalism is Nilpotent, Phys. Lett. B 695 (2011) 312 [arXiv:1008.1778] [INSPIRE].
  12. [12]
    R. Lipinski Jusinskas, Nilpotency of the b ghost in the non-minimal pure spinor formalism, JHEP 05 (2013) 048 [arXiv:1303.3966] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    O. Chandía and B.C. Vallilo, Non-minimal fields of the pure spinor string in general curved backgrounds, JHEP 02 (2015) 092 [arXiv:1412.1030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Chandía, The Non-minimal Heterotic Pure Spinor String in a Curved Background, JHEP 03 (2014) 095 [arXiv:1311.7012] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    N. Berkovits and O. Chandía, Simplified Pure Spinor b Ghost in a Curved Heterotic Superstring Background, JHEP 06 (2014) 001 [arXiv:1403.2429] [INSPIRE].
  16. [16]
    O. Chandía, A. Mikhailov and B.C. Vallilo, A construction of integrated vertex operator in the pure spinor σ-model in AdS 5 × S 5, JHEP 11 (2013) 124 [arXiv:1306.0145] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, & UAI Physics Center, Universidad Adolfo IbáñezSantiagoChile

Personalised recommendations