Advertisement

Inverse anisotropic catalysis in holographic QCD

  • Umut Gürsoy
  • Matti JärvinenEmail author
  • Govert Nijs
  • Juan F. Pedraza
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We investigate the effects of anisotropy on the chiral condensate in a holographic model of QCD with a fully backreacted quark sector at vanishing chemical potential. The high temperature deconfined phase is therefore a neutral and anisotropic plasma showing different pressure gradients along different spatial directions, similar to the state produced in noncentral heavy-ion collisions. We find that the chiral transition occurs at a lower temperature in the presence of anisotropy. Equivalently, we find that anisotropy acts destructively on the chiral condensate near the transition temperature. These are precisely the same footprints as the “inverse magnetic catalysis” i.e. the destruction of the condensate with increasing magnetic field observed earlier on the lattice, in effective field theory models and in holography. Based on our findings we suggest, in accordance with the conjecture of [1], that the cause for the inverse magnetic catalysis may be the anisotropy caused by the presence of the magnetic field instead of the charge dynamics created by it. We conclude that the weakening of the chiral condensate due to anisotropy is more general than that due to a magnetic field and we coin the former “inverse anisotropic catalysis”. Finally, we observe that any amount of anisotropy changes the IR physics substantially: the geometry is AdS4 × ℝ up to small corrections, confinement is present only up to a certain scale, and the particles acquire finite widths.

Keywords

Gauge-gravity correspondence Holography and quark-gluon plasmas Phase Diagram of QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories and holography, Phys. Rev. Lett. 121 (2018) 121601 [arXiv:1708.05691] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars - implications for gamma-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265 (1991) 258 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Tashiro, T. Vachaspati and A. Vilenkin, Chiral effects and cosmic magnetic fields, Phys. Rev. D 86 (2012) 105033 [arXiv:1206.5549] [INSPIRE].ADSGoogle Scholar
  5. [5]
    V.B. Semikoz and J.W.F. Valle, Lepton asymmetries and the growth of cosmological seed magnetic fields, JHEP 03 (2008) 067 [arXiv:0704.3978] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V.B. Semikoz, D.D. Sokoloff and J.W.F. Valle, Is the baryon asymmetry of the Universe related to galactic magnetic fields?, Phys. Rev. D 80 (2009) 083510 [arXiv:0905.3365] [INSPIRE].ADSGoogle Scholar
  7. [7]
    V.B. Semikoz, D.D. Sokoloff and J.W.F. Valle, Lepton asymmetries and primordial hypermagnetic helicity evolution, JCAP 06 (2012) 008 [arXiv:1205.3607] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Kahniashvili, A.G. Tevzadze, A. Brandenburg and A. Neronov, Evolution of primordial magnetic fields from phase transitions, Phys. Rev. D 87 (2013) 083007 [arXiv:1212.0596] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Dvornikov and V.B. Semikoz, Instability of magnetic fields in electroweak plasma driven by neutrino asymmetries, JCAP 05 (2014) 002 [arXiv:1311.5267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [INSPIRE].
  11. [11]
    B. Müller and J.L. Nagle, Results from the relativistic heavy ion collider, Ann. Rev. Nucl. Part. Sci. 56 (2006) 93 [nucl-th/0602029] [INSPIRE].
  12. [12]
    M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: Froma new state of mattertothe perfect fluid’, Rept. Prog. Phys. 69 (2006) 2005 [nucl-ex/0603003] [INSPIRE].
  13. [13]
    E.V. Shuryak, Strongly coupled quark-gluon plasma: the status report, in the proceedings of the 7th Workshop, Continuous advances in QCD (QCD2006), May 11–14, Minneapolis, U.S.A. (2006), hep-ph/0608177 [INSPIRE].
  14. [14]
    D.G. d’Enterria, Quark-gluon matter, J. Phys. G 34 (2007) S53 [nucl-ex/0611012] [INSPIRE].
  15. [15]
    B. Müller, From quark-gluon plasma to the perfect liquid, Acta Phys. Polon. B 38 (2007) 3705 [arXiv:0710.3366] [INSPIRE].Google Scholar
  16. [16]
    W.A. Zajc, The fluid nature of quark-gluon plasma, Nucl. Phys. A 805 (2008) 283 [arXiv:0802.3552] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
  18. [18]
    ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].
  19. [19]
    STAR collaboration, Elliptic flow in Au+Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].
  20. [20]
    V. Skokov, A.Yu. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Tuchin, Synchrotron radiation by fast fermions in heavy-ion collisions, Phys. Rev. C 82 (2010) 034904 [Erratum ibid. C 83 (2011) 039903] [arXiv:1006.3051] [INSPIRE].
  22. [22]
    V. Voronyuk et al., (Electro-)Magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].
  23. [23]
    W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907 [arXiv:1201.5108] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].
  25. [25]
    L. McLerran and V. Skokov, Comments about the electromagnetic field in heavy-ion collisions, Nucl. Phys. A 929 (2014) 184 [arXiv:1305.0774] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.E. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, ‘Strongly interacting matter in magnetic fields: an overview, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, Strongly Interacting matter in magnetic fields, Lect. Notes Phys. 871 (2013) 1.ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    V.A. Miransky and I.A. Shovkovy, Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals, Phys. Rept. 576 (2015) 1 [arXiv:1503.00732] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044 [arXiv:1111.4956] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    G.S. Bali et al., The finite temperature QCD transition in external magnetic fields, PoS(LATTICE 2011)192 [arXiv:1111.5155] [INSPIRE].
  32. [32]
    G.S. Bali et al., QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. D’Elia, Lattice QCD simulations in external background fields, Lect. Notes Phys. 871 (2013) 181 [arXiv:1209.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid. 76 (1996) 1005] [hep-ph/9405262] [INSPIRE].
  35. [35]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions, Phys. Lett. B 349 (1995) 477 [hep-ph/9412257] [INSPIRE].
  36. [36]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. D 52 (1995) 4718 [hep-th/9407168] [INSPIRE].ADSGoogle Scholar
  37. [37]
    F. Bruckmann, G. Endrodi and T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop, JHEP 04 (2013) 112 [arXiv:1303.3972] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Bruckmann, G. Endrodi and T.G. Kovacs, Inverse magnetic catalysis in QCD, arXiv:1311.3178 [INSPIRE].
  39. [39]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in field theory and gauge-gravity duality, Lect. Notes Phys. 871 (2013) 51 [arXiv:1208.0536] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Jokela, A.V. Ramallo and D. Zoakos, Magnetic catalysis in flavored ABJM, JHEP 02 (2014) 021 [arXiv:1311.6265] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K.A. Mamo, Inverse magnetic catalysis in holographic models of QCD, JHEP 05 (2015) 121 [arXiv:1501.03262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    B. McInnes, Inverse magnetic/shear catalysis, Nucl. Phys. B 906 (2016) 40 [arXiv:1511.05293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Evans, C. Miller and M. Scott, Inverse magnetic catalysis in bottom-up holographic QCD, Phys. Rev. D 94 (2016) 074034 [arXiv:1604.06307] [INSPIRE].ADSGoogle Scholar
  45. [45]
    U. Gürsoy, I. Iatrakis, M. Järvinen and G. Nijs, Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit, JHEP 03 (2017) 053 [arXiv:1611.06339] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G.H. Nijs, Inverse magnetic catalysis in QCD and holography, Master’s thesis, Utrecht University, Utrecht, The Netherlands (2016).Google Scholar
  47. [47]
    A. Ballon-Bayona, M. Ihl, J.P. Shock and D. Zoakos, A universal order parameter for inverse magnetic catalysis, JHEP 10 (2017) 038 [arXiv:1706.05977] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    U. Gürsoy, M. Jarvinen and G. Nijs, Holographic QCD in the Veneziano limit at a finite magnetic field and chemical potential, Phys. Rev. Lett. 120 (2018) 242002 [arXiv:1707.00872] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D.M. Rodrigues, E. Folco Capossoli and H. Boschi-Filho, Magnetic catalysis and inverse magnetic catalysis in (2 + 1)-dimensional gauge theories from holographic models, Phys. Rev. D 97 (2018) 126001 [arXiv:1710.07310] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D.M. Rodrigues, D. Li, E. Folco Capossoli and H. Boschi-Filho, Chiral symmetry breaking and restoration in 2 + 1 dimensions from holography: magnetic and inverse magnetic catalysis, Phys. Rev. D 98 (2018) 106007 [arXiv:1807.11822] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D.M. Rodrigues, D. Li, E. Folco Capossoli and H. Boschi-Filho, Holographic description of chiral symmetry breaking in a magnetic field in 2 + 1 dimensions with an improved dilaton, arXiv:1811.04117 [INSPIRE].
  52. [52]
    D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    F. Bigazzi et al., Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Jarvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal transitions and mass spectra of V-QCD, JHEP 11 (2013) 068 [arXiv:1309.2286] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Arean, I. Iatrakis, M. Jarvinen and E. Kiritsis, CP-odd sector and θ dynamics in holographic QCD, Phys. Rev. D 96 (2017) 026001 [arXiv:1609.08922] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved holographic Yang-Mills at finite temperature: comparison with data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    U. Gürsoy et al., The Chern-Simons diffusion rate in improved holographic QCD, JHEP 02 (2013) 119 [arXiv:1212.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    T. Alho et al., On finite-temperature holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Jarvinen, Massive holographic QCD in the Veneziano limit, JHEP 07 (2015) 033 [arXiv:1501.07272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, JHEP 03 (2019) 041 [arXiv:1809.07770] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Drwenski, U. Gürsoy and I. Iatrakis, Thermodynamics and CP-odd transport in holographic QCD with finite magnetic field, JHEP 12 (2016) 049 [arXiv:1506.01350] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    T. Alho et al., A holographic model for QCD in the Veneziano limit at finite temperature and density, JHEP 04 (2014) 124 [arXiv:1312.5199] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G. Arias Tamargo, Strongly interacting anisotropic gauge theories and holography, Master’s thesis, Utrecht University, Utrecht, The Netherlands (2018).Google Scholar
  69. [69]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    J.F. Pedraza, W. Sybesma and M.R. Visser, Hyperscaling violating black holes with spherical and hyperbolic horizons, Class. Quant. Grav. 36 (2019) 054002 [arXiv:1807.09770] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  74. [74]
    I. Iatrakis and I. Zahed, Spectral functions in V-QCD with matter: masses, susceptibilities, diffusion and conductivity, JHEP 04 (2015) 080 [arXiv:1410.8540] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    T. Alho et al., Quantum and stringy corrections to the equation of state of holographic QCD matter and the nature of the chiral transition, Phys. Rev. D 91 (2015) 055017 [arXiv:1501.06379] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    Y. Kinar, E. Schreiber and J. Sonnenschein, \( Q\overline{Q} \) potential from strings in curved space-time: classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    I. Papadimitriou, Holographic renormalization of general dilaton-axion gravity, JHEP 08 (2011) 119 [arXiv:1106.4826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Quarkonium dissociation by anisotropy, JHEP 01 (2013) 170 [arXiv:1208.2672] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    D. Ávila, D. Fernández, L. Patiño and D. Trancanelli, Thermodynamics of anisotropic branes, JHEP 11 (2016) 132 [arXiv:1609.02167] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    I. Aref’eva and K. Rannu, Holographic anisotropic background with confinement-deconfinement phase transition, JHEP 05 (2018) 206 [arXiv:1802.05652] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    I. Aref’eva, K. Rannu and P. Slepov, Orientation dependence of confinement-deconfinement phase transition in anisotropic media, arXiv:1808.05596 [INSPIRE].
  83. [83]
    D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    K. Hashimoto, S. Sugishita, A. Tanaka and A. Tomiya, Deep learning and holographic QCD, Phys. Rev. D 98 (2018) 106014 [arXiv:1809.10536] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    D. Dudal and S. Mahapatra, Interplay between the holographic QCD phase diagram and entanglement entropy, JHEP 07 (2018) 120 [arXiv:1805.02938] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    D. Dudal and S. Mahapatra, Confining gauge theories and holographic entanglement entropy with a magnetic field, JHEP 04 (2017) 031 [arXiv:1612.06248] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  91. [91]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  92. [92]
    E. D’Hoker and P. Kraus, Quantum criticality via magnetic branes, Lect. Notes Phys. 871 (2013) 469 [arXiv:1208.1925] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    A.G. Grushin, Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals, Phys. Rev. D 86 (2012) 045001 [arXiv:1205.3722] [INSPIRE].ADSGoogle Scholar
  94. [94]
    A.A. Zyuzin and A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86 (2012) 115133 [arXiv:1206.1868] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    P. Goswami and S. Tewari, Axionic field theory of (3 + 1)-dimensional Weyl semimetals, Phys. Rev. B 88 (2013) 245107 [arXiv:1210.6352] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    G. Itsios, N. Jokela, J. Järvelä and A.V. Ramallo, Low-energy modes in anisotropic holographic fluids, Nucl. Phys. B 940 (2019) 264 [arXiv:1808.07035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    D. Bollweg, M. Klegrewe and W. Unger, Thermodynamics at strong coupling on anisotropic lattices, in the proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), July 22–28, East Lansing, U.S.A. (2018), arXiv:1811.03584 [INSPIRE].
  98. [98]
    D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, V-QCD: spectra, the dilaton and the S-parameter, Phys. Lett. B 720 (2013) 219 [arXiv:1211.6125] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Umut Gürsoy
    • 1
  • Matti Järvinen
    • 1
    Email author
  • Govert Nijs
    • 1
  • Juan F. Pedraza
    • 2
  1. 1.Institute for Theoretical Physics and Center for Extreme Matter and Emergent PhenomenaUtrecht UniversityUtrechtThe Netherlands
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations