Advertisement

Second order splitting functions and infrared safe cross sections in \( \mathcal{N} \) = 4 SYM theory

  • Pulak Banerjee
  • Amlan ChakrabortyEmail author
  • Prasanna K. Dhani
  • V. Ravindran
  • Satyajit Seth
Open Access
Regular Article - Theoretical Physics

Abstract

We report our findings on the perturbative structure of \( \mathcal{N} \) = 4 supersymmetric Yang-Mills (SYM) theory in the infrared sector by computing inclusive scattering cross sections of on-shell particles. We use half-BPS, energy-momentum tensor and Konishi operators to produce singlet states in the scattering processes to probe the soft and the collinear properties of the cross sections. By appropriately defining the infrared safe observables, we obtain collinear splitting functions up to second order in the perturbation theory. The splitting functions and the infrared finite cross sections demonstrate several interesting connections with those in the perturbative QCD. We also determine the process independent soft distribution function up to third order in the perturbation theory and show that it is universal i.e. independent of the operators as well as the external states. Interestingly, the soft distribution function in \( \mathcal{N} \) = 4 SYM theory matches exactly with the leading transcendental part of the corresponding one in the QCD. This enables us to predict the third order soft plus virtual cross section for the production of the on-shell singlet states.

Keywords

Extended Supersymmetry Perturbative QCD Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett. 25 (1970) 316 [Erratum ibid. 25 (1970) 902] [INSPIRE].
  2. [2]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.J. Gross and F. Wilczek, Asymptotically Free Gauge TheoriesI, Phys. Rev. D 8 (1973) 3633 [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. Georgi and H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D 9 (1974) 416 [INSPIRE].ADSGoogle Scholar
  5. [5]
    E.G. Floratos, D.A. Ross and C.T. Sachrajda, Higher Order Effects in Asymptotically Free Gauge Theories: The Anomalous Dimensions of Wilson Operators, Nucl. Phys. B 129 (1977) 66 [Erratum ibid. B 139 (1978) 545] [INSPIRE].
  6. [6]
    E.G. Floratos, D.A. Ross and C.T. Sachrajda, Higher Order Effects in Asymptotically Free Gauge Theories. 2. Flavor Singlet Wilson Operators and Coefficient Functions, Nucl. Phys. B 152 (1979) 493 [INSPIRE].
  7. [7]
    A. Gonzalez-Arroyo, C. Lopez and F.J. Yndurain, Second Order Contributions to the Structure Functions in Deep Inelastic Scattering. 1. Theoretical Calculations, Nucl. Phys. B 153 (1979) 161 [INSPIRE].
  8. [8]
    A. Gonzalez-Arroyo and C. Lopez, Second Order Contributions to the Structure Functions in Deep Inelastic Scattering. 3. The Singlet Case, Nucl. Phys. B 166 (1980) 429 [INSPIRE].
  9. [9]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].ADSGoogle Scholar
  10. [10]
    W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading Order, Phys. Lett. 97B (1980) 437 [INSPIRE].ADSGoogle Scholar
  11. [11]
    E.G. Floratos, C. Kounnas and R. Lacaze, Higher Order QCD Effects in Inclusive Annihilation and Deep Inelastic Scattering, Nucl. Phys. B 192 (1981) 417 [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Hamberg and W.L. van Neerven, The Correct renormalization of the gluon operator in a covariant gauge, Nucl. Phys. B 379 (1992) 143 [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  14. [14]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  15. [15]
    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041 [arXiv:1707.08315] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-N f contributions to the four-loop splitting functions in QCD, Nucl. Phys. B 915 (2017) 335 [arXiv:1610.07477] [INSPIRE].ADSzbMATHGoogle Scholar
  17. [17]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S Matrix, Phys. Rev. D 15 (1977) 996 [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  19. [19]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].zbMATHGoogle Scholar
  20. [20]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Simplifications of four point functions in N = 4 supersymmetric Yang-Mills theory at two loops, Phys. Lett. B 466 (1999) 20 [hep-th/9906051] [INSPIRE].ADSzbMATHGoogle Scholar
  22. [22]
    B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    B. Eden, C. Schubert and E. Sokatchev, Four point functions of chiral primary operators in N = 4 SYM, in Quantization, gauge theory and strings. Proceedings of International Conference dedicated to the memory of Professor Efim Fradkin, Moscow Russia (2000), pg. 178 [hep-th/0010005] [INSPIRE].
  24. [24]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  27. [27]
    V.K. Dobrev and V.B. Petkova, On the group theoretical approach to extended conformal supersymmetry: classification of multiplets, Lett. Math. Phys. 9 (1985) 287 [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    S. Ferrara and E. Sokatchev, Short representations of SU(2, 2/N) and harmonic superspace analyticity, Lett. Math. Phys. 52 (2000) 247 [hep-th/9912168] [INSPIRE].zbMATHGoogle Scholar
  29. [29]
    S. Ferrara, Superspace representations of SU(2, 2/N) superalgebras and multiplet shortening, PoS(tmr99)(1999)016.Google Scholar
  30. [30]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].zbMATHGoogle Scholar
  31. [31]
    J. Rasmussen, Comments on N = 4 superconformal algebras, Nucl. Phys. B 593 (2001) 634 [hep-th/0003035] [INSPIRE].ADSzbMATHGoogle Scholar
  32. [32]
    W.L. van Neerven, Infrared Behavior of On-shell Form-factors in a N = 4 Supersymmetric Yang-Mills Field Theory, Z. Phys. C 30 (1986) 595 [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSzbMATHGoogle Scholar
  34. [34]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form Factors in N = 4 Super Yang-Mills and Periodic Wilson Loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSzbMATHGoogle Scholar
  35. [35]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSzbMATHGoogle Scholar
  36. [36]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of Super Form Factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSzbMATHGoogle Scholar
  38. [38]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV Form Factors in Superspace for \( \mathcal{N} \) = 4 SYM Theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].ADSzbMATHGoogle Scholar
  39. [39]
    K. Konishi, Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in \( \mathcal{N} \) = 4 SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].ADSzbMATHGoogle Scholar
  41. [41]
    T. Ahmed, P. Banerjee, P.K. Dhani, N. Rana, V. Ravindran and S. Seth, Konishi form factor at three loops in \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 95 (2017) 085019 [arXiv:1610.05317] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Banerjee, P.K. Dhani, M. Mahakhud, V. Ravindran and S. Seth, Finite remainders of the Konishi at two loops in \( \mathcal{N} \) = 4 SYM, JHEP 05 (2017) 085 [arXiv:1612.00885] [INSPIRE].ADSzbMATHGoogle Scholar
  43. [43]
    M. Wilhelm, Amplitudes, Form Factors and the Dilatation Operator in \( \mathcal{N} \) = 4 SYM Theory, JHEP 02 (2015) 149 [arXiv:1410.6309] [INSPIRE].ADSzbMATHGoogle Scholar
  44. [44]
    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-Shell Methods for the Two-Loop Dilatation Operator and Finite Remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].ADSzbMATHGoogle Scholar
  46. [46]
    F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].ADSzbMATHGoogle Scholar
  47. [47]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [Zh. Eksp. Teor. Fiz. 30 (1956) 87] [INSPIRE].
  48. [48]
    A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  52. [52]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  53. [53]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  54. [54]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSzbMATHGoogle Scholar
  56. [56]
    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSGoogle Scholar
  57. [57]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSGoogle Scholar
  58. [58]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSGoogle Scholar
  59. [59]
    D.R.T. Jones, Charge Renormalization in a Supersymmetric Yang-Mills Theory, Phys. Lett. 72B (1977) 199 [INSPIRE].ADSGoogle Scholar
  60. [60]
    E.C. Poggio and H.N. Pendleton, Vanishing of Charge Renormalization and Anomalies in aSupersymmetric Gauge Theory, Phys. Lett. B 72 (1977) 200 [INSPIRE].ADSGoogle Scholar
  61. [61]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSGoogle Scholar
  62. [62]
    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by Dimensional Reduction of Supersymmetric and Nonsupersymmetric Gauge Theories, Nucl. Phys. B 167 (1980) 479 [INSPIRE].ADSGoogle Scholar
  63. [63]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  65. [65]
    R.K. Ellis and J.C. Sexton, QCD Radiative Corrections to Parton Parton Scattering, Nucl. Phys. B 269 (1986) 445 [INSPIRE].ADSGoogle Scholar
  66. [66]
    Z. Bern and D.A. Kosower, The Computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].ADSGoogle Scholar
  67. [67]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
  68. [68]
    D. Anselmi, M.T. Grisaru and A. Johansen, A Critical behavior of anomalous currents, electric-magnetic universality and CFT in four-dimensions, Nucl. Phys. B 491 (1997) 221 [hep-th/9601023] [INSPIRE].ADSzbMATHGoogle Scholar
  69. [69]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].ADSzbMATHGoogle Scholar
  70. [70]
    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
  71. [71]
    B. Eden, C. Jarczak and E. Sokatchev, A Three-loop test of the dilatation operator in N = 4 SYM, Nucl. Phys. B 712 (2005) 157 [hep-th/0409009] [INSPIRE].ADSzbMATHGoogle Scholar
  72. [72]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].ADSGoogle Scholar
  73. [73]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].
  74. [74]
    L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [Yad. Fiz. 20 (1974) 181] [INSPIRE].
  75. [75]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e− Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].
  76. [76]
    E.G. Floratos, R. Lacaze and C. Kounnas, Space and Timelike Cut Vertices in QCD Beyond the Leading Order. 2. The Singlet Sector, Phys. Lett. B 98 (1981) 285 [INSPIRE].
  77. [77]
    E.G. Floratos, R. Lacaze and C. Kounnas, Space and Timelike Cut Vertices in QCD Beyond the Leading Order. 1. Nonsinglet Sector, Phys. Lett. B 98 (1981) 89 [INSPIRE].
  78. [78]
    A. Vogt, S. Moch and J. Vermaseren, The three-loop splitting functions in QCD, Nucl. Phys. Proc. Suppl. 152 (2006) 110 [hep-ph/0407321] [INSPIRE].
  79. [79]
    H.D. Politzer, Asymptotic Freedom: An Approach to Strong Interactions, Phys. Rept. 14 (1974) 129 [INSPIRE].ADSGoogle Scholar
  80. [80]
    A.J. Buras, Asymptotic Freedom in Deep Inelastic Processes in the Leading Order and Beyond, Rev. Mod. Phys. 52 (1980) 199 [INSPIRE].ADSGoogle Scholar
  81. [81]
    G. Altarelli, Partons in Quantum Chromodynamics, Phys. Rept. 81 (1982) 1 [INSPIRE].ADSGoogle Scholar
  82. [82]
    K. Hagiwara et al., Quantum chromodynamics at short distances, Prog. Theor. Phys. Suppl. 77 (1983) 1 [INSPIRE].Google Scholar
  83. [83]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2., Phys. Rev. D 9 (1974) 980 [INSPIRE].
  84. [84]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSzbMATHGoogle Scholar
  85. [85]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  86. [86]
    M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
  87. [87]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  88. [88]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  89. [89]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].
  90. [90]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
  91. [91]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  92. [92]
    A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].ADSGoogle Scholar
  93. [93]
    T. Ahmed et al., NNLO QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity, Eur. Phys. J. C 77 (2017) 22 [arXiv:1606.08454] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Banerjee, P.K. Dhani, M.C. Kumar, P. Mathews and V. Ravindran, NNLO QCD corrections to production of a spin-2 particle with nonuniversal couplings in the Drell-Yan process, Phys. Rev. D 97 (2018) 094028 [arXiv:1710.04184] [INSPIRE].ADSGoogle Scholar
  95. [95]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSGoogle Scholar
  96. [96]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].Google Scholar
  97. [97]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSzbMATHGoogle Scholar
  98. [98]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].
  99. [99]
    V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSGoogle Scholar
  100. [100]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
  101. [101]
    A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008] [INSPIRE].
  102. [102]
    A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].
  103. [103]
    A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, Anomalous dimensions of Wilson operators in N = 4 SYM theory, Phys. Lett. B 557 (2003) 114 [hep-ph/0301021] [INSPIRE].
  104. [104]
    A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl. Phys. B 769 (2007) 217 [hep-th/0611204] [INSPIRE].ADSzbMATHGoogle Scholar
  105. [105]
    C. Marboe and V. Velizhanin, Twist-2 at seven loops in planar \( \mathcal{N} \) = 4 SYM theory: full result and analytic properties, JHEP 11 (2016) 013 [arXiv:1607.06047] [INSPIRE].ADSzbMATHGoogle Scholar
  106. [106]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSGoogle Scholar
  107. [107]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [INSPIRE].ADSGoogle Scholar
  108. [108]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].ADSzbMATHGoogle Scholar
  109. [109]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  110. [110]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSzbMATHGoogle Scholar
  111. [111]
    J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].ADSzbMATHGoogle Scholar
  112. [112]
    B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing Hexagons at Three Loops, Nucl. Phys. B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE].ADSzbMATHGoogle Scholar
  113. [113]
    V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079 [arXiv:1607.02195] [INSPIRE].ADSzbMATHGoogle Scholar
  114. [114]
    B. Basso, V. Goncalves and S. Komatsu, Structure constants at wrapping order, JHEP 05 (2017) 124 [arXiv:1702.02154] [INSPIRE].ADSzbMATHGoogle Scholar
  115. [115]
    A. Georgoudis, V. Goncalves and R. Pereira, Konishi OPE coefficient at the five loop order, JHEP 11 (2018) 184 [arXiv:1710.06419] [INSPIRE].ADSzbMATHGoogle Scholar
  116. [116]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSzbMATHGoogle Scholar
  117. [117]
    A. Koukoutsakis, Higgs bosons and QCD jets at two loops, Ph.D. Thesis, Durham University, Durham U.K. (2003).Google Scholar
  118. [118]
    P. Banerjee, P.K. Dhani and V. Ravindran, Two loop QCD corrections for the process Pseudo-scalar Higgs → 3 partons, JHEP 10 (2017) 067 [arXiv:1708.02387] [INSPIRE].ADSGoogle Scholar
  119. [119]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSzbMATHGoogle Scholar
  120. [120]
    T. Ahmed, T. Gehrmann, P. Mathews, N. Rana and V. Ravindran, Pseudo-scalar Form Factors at Three Loops in QCD, JHEP 11 (2015) 169 [arXiv:1510.01715] [INSPIRE].ADSzbMATHGoogle Scholar
  121. [121]
    T. Ahmed, G. Das, P. Mathews, N. Rana and V. Ravindran, Spin-2 Form Factors at Three Loop in QCD, JHEP 12 (2015) 084 [arXiv:1508.05043] [INSPIRE].ADSGoogle Scholar
  122. [122]
    T. Ahmed, P. Banerjee, P.K. Dhani, P. Mathews, N. Rana and V. Ravindran, Three loop form factors of a massive spin-2 particle with nonuniversal coupling, Phys. Rev. D 95 (2017) 034035 [arXiv:1612.00024] [INSPIRE].ADSGoogle Scholar
  123. [123]
    V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [INSPIRE].
  124. [124]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  125. [125]
    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].ADSGoogle Scholar
  126. [126]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].ADSGoogle Scholar
  127. [127]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Pulak Banerjee
    • 1
  • Amlan Chakraborty
    • 1
    Email author
  • Prasanna K. Dhani
    • 1
    • 2
  • V. Ravindran
    • 1
  • Satyajit Seth
    • 3
  1. 1.The Institute of Mathematical Sciences, HBNIChennaiIndia
  2. 2.INFN, Sezione di FirenzeFlorenceItaly
  3. 3.Institute for Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamU.K.

Personalised recommendations