Advertisement

A nAttractor mechanism for nAdS2/nCFT1 holography

  • Finn LarsenEmail author
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We study the nearly AdS2 geometry of nearly extremal black holes in \( \mathcal{N}=2 \) supergravity in four dimensions. In the strictly extreme limit the attractor mechanism for asymptotically flat black holes states that the horizon geometries of these black holes are independent of scalar moduli. We determine the dependence of the near extreme geometry on asymptotic moduli and express the result in simple formulae that generalize the extremal attractor mechanism to nearly extreme black holes. This is a nAttractor mechanism.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  4. [4]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  5. [5]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
  7. [7]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  8. [8]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  9. [9]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  10. [10]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  13. [13]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  14. [14]
    G. Sárosi, AdS 2 holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
  15. [15]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].
  16. [16]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].
  17. [17]
    J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A 6 (1991) 2353 [INSPIRE].
  18. [18]
    A. Almheiri and B. Kang, Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].
  20. [20]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].
  21. [21]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
  23. [23]
    S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev. D 73 (2006) 125005 [hep-th/0603247] [INSPIRE].
  24. [24]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].
  25. [25]
    A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS 2 /nCF T 1 correspondence, JHEP 10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
  26. [26]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].
  27. [27]
    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].
  28. [28]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, 5D attractors with higher derivatives, JHEP 04 (2007) 091 [hep-th/0702072] [INSPIRE].
  29. [29]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP 10 (2006) 074 [hep-th/0608044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].
  32. [32]
    F. Larsen, The Attractor Mechanism in Five Dimensions, Lect. Notes Phys. 755 (2008) 249 [hep-th/0608191] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    P. Kraus and F. Larsen, Attractors and black rings, Phys. Rev. D 72 (2005) 024010 [hep-th/0503219] [INSPIRE].
  34. [34]
    L.D. Landau and E.M. Lifshitz, Mechanics, in Course of Theoretical Physics, vol. 1, Elsevier Science (1976).Google Scholar
  35. [35]
    G.W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity, Nucl. Phys. B 207 (1982) 337 [INSPIRE].
  36. [36]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].
  38. [38]
    S.M. Carroll, M.C. Johnson and L. Randall, Extremal limits and black hole entropy, JHEP 11 (2009) 109 [arXiv:0901.0931] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Cvetič and D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D 53 (1996) 584 [hep-th/9507090] [INSPIRE].
  40. [40]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  43. [43]
    Y.-Z. Li, S.-L. Li and H. Lü, Exact Embeddings of JT Gravity in Strings and M-theory, Eur. Phys. J. C 78 (2018) 791 [arXiv:1804.09742] [INSPIRE].
  44. [44]
    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of \( \mathcal{N}=8 \) supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].
  45. [45]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Cvetič and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [INSPIRE].
  47. [47]
    R.K. Gupta and A. Sen, AdS 3 /CF T 2 to AdS 2 /CF T 1, JHEP 04 (2009) 034 [arXiv:0806.0053] [INSPIRE].
  48. [48]
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [INSPIRE].
  49. [49]
    A. Castro, C. Keeler and F. Larsen, Three Dimensional Origin of AdS 2 Quantum Gravity, JHEP 07 (2010) 033 [arXiv:1004.0554] [INSPIRE].
  50. [50]
    B. de Wit, Supergravity, in Unity from duality: Gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76th session, Les Houches, France, July 30-August 31, 2001, pp. 1-135 (2002) [hep-th/0212245] [INSPIRE].
  51. [51]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and Leinweber Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations