Advertisement

Solving mass-deformed holography perturbatively

  • Nakwoo KimEmail author
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We study supergravity BPS equations which correspond to mass-deformation of some representative AdS/CFT examples. The field theory of interest are \( \mathcal{N} \) = 4, D = 4 super Yang-Mills, the ABJM model in D = 3, and the Brandhuber-Oz fixed point in D = 5. For these gauge theories the free energy with mass terms for matter multiplets is calculable in large-N limit using supersymmetric localization technique. We suggest a perturbative method to solve the supergravity equations. For the dual of mass-deformed ABJM model we reproduce the known exact solutions. For the mass-deformed Brandhuber-Oz theory our method gives the holographic free energy in analytic form. For \( \mathcal{N} \) = 2* theory our result is in good agreement with the localization result.

Keywords

AdS-CFT Correspondence Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D. Martelli and J. Sparks, The large N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Gang, N. Kim and S. Lee, Holography of wrapped M5-branes and Chern-Simons theory, Phys. Lett. B 733 (2014) 316 [arXiv:1401.3595] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Gang, N. Kim and S. Lee, Holography of 3d-3d correspondence at Large N, JHEP 04 (2015) 091 [arXiv:1409.6206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Lee and M. Yamazaki, 3d Chern-Simons Theory from M5-branes, JHEP 12 (2013) 035 [arXiv:1305.2429] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the Squashed Three-Sphere, JHEP 11 (2017) 119 [arXiv:1305.2891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Brandhuber and Y. Oz, The D-4-D-8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D.Z. Freedman and S.S. Pufu, The holography of F-maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2* on S 4, JHEP 07 (2014) 001 [arXiv:1311.1508] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Gutperle, J. Kaidi and H. Raj, Mass deformations of 5d SCFTs via holography, JHEP 02 (2018) 165 [arXiv:1801.00730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Karndumri, Holographic RG flows in six dimensional F(4) gauged supergravity, JHEP 01 (2013) 134 [Erratum ibid. 06 (2015) 165] [arXiv:1210.8064] [INSPIRE].
  23. [23]
    V. Balasubramanian and A. Buchel, On consistent truncations in N = 2* holography, JHEP 02 (2014) 030 [arXiv:1311.5044] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Bigazzi, A.L. Cotrone, L. Griguolo and D. Seminara, A novel cross-check of localization and non conformal holography, JHEP 03 (2014) 072 [arXiv:1312.4561] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Karndumri, Gravity duals of 5D N = 2 SYM theory from F(4) gauged supergravity, Phys. Rev. D 90 (2014) 086009 [arXiv:1403.1150] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Karch, B. Robinson and C.F. Uhlemann, Precision Test of Gauge-Gravity Duality with Flavor, Phys. Rev. Lett. 115 (2015) 261601 [arXiv:1509.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    X. Chen-Lin, A. Dekel and K. Zarembo, Holographic Wilson loops in symmetric representations in \( \mathcal{N} \) = 2* super-Yang-Mills theory, JHEP 02 (2016) 109 [arXiv:1512.06420] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    N. Bobev, H. Elvang, U. Kol, T. Olson and S.S. Pufu, Holography for \( \mathcal{N} \) = 1* on S 4, JHEP 10 (2016) 095 [arXiv:1605.00656] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    U. Kol, Holography for \( \mathcal{N} \) = 1* on S 4 and Supergravity, arXiv:1611.09396 [INSPIRE].
  30. [30]
    M. Gutperle, J. Kaidi and H. Raj, Janus solutions in six-dimensional gauged supergravity, JHEP 12 (2017) 018 [arXiv:1709.09204] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    H. Kim, N. Kim and M. Suh, On the U(1)2 -Invariant Sector of Dyonic Maximal Supergravity, J. Korean Phys. Soc. 73 (2018) 249 [arXiv:1801.01286] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Bobev, F.F. Gautason and J. Van Muiden, Precision Holography for \( \mathcal{N} \) = 2* on S 4 from type IIB Supergravity, JHEP 04 (2018) 148 [arXiv:1802.09539] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    N. Bobev, F.F. Gautason, B.E. Niehoff and J. van Muiden, Uplifting GPPZ: a ten-dimensional dual of \( \mathcal{N} \) = 1*, JHEP 10 (2018) 058 [arXiv:1805.03623] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    N. Bobev, V.S. Min, K. Pilch and F. Rosso, Mass Deformations of the ABJM Theory: The Holographic Free Energy, JHEP 03 (2019) 130 [arXiv:1812.01026] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    J.G. Russo, E. Widén and K. Zarembo, N = 2* phase transitions and holography, JHEP 02 (2019) 196 [arXiv:1901.02835] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Bhattacharyya, S. Minwalla and K. Papadodimas, Small Hairy Black Holes in AdS 5 × S 5, JHEP 11 (2011) 035 [arXiv:1005.1287] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    L.F. Alday, M. Fluder, P. Richmond and J. Sparks, Gravity Dual of Supersymmetric Gauge Theories on a Squashed Five-Sphere, Phys. Rev. Lett. 113 (2014) 141601 [arXiv:1404.1925] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L.F. Alday, M. Fluder, C.M. Gregory, P. Richmond and J. Sparks, Supersymmetric gauge theories on squashed five-spheres and their gravity duals, JHEP 09 (2014) 067 [arXiv:1405.7194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged Six-Dimensional Supergravity from Warped IIB Reductions, JHEP 09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett. B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their consistent truncations with vector multiplets, arXiv:1901.11039 [INSPIRE].
  44. [44]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  45. [45]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 Solutions of Type IIB Supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity I: Local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].CrossRefzbMATHGoogle Scholar
  47. [47]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity II: Global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity III: Global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Buchel, J.G. Russo and K. Zarembo, Rigorous Test of Non-conformal Holography: Wilson Loops in N = 2* Theory, JHEP 03 (2013) 062 [arXiv:1301.1597] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and Research Institute of Basic ScienceKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations