Advertisement

Heavy Higgs as a portal to the supersymmetric electroweak sector

  • Stefania Gori
  • Zhen Liu
  • Bibhushan ShakyaEmail author
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

The electroweak sector of the Minimal Supersymmetric Standard Model (MSSM) — neutralinos, charginos and sleptons — remains relatively weakly constrained at the LHC due in part to the small production cross sections of these particles. In this paper, we study the prospects of searching for decays of heavy Higgs bosons into these superpartners at the high luminosity LHC. In addition to the kinematic handles offered by the presence of a resonant particle in the production chain, heavy Higgs decays can be the dominant production mode of these superpartners, making it possible to extend coverage to otherwise inaccessible regions of the supersymmetry and heavy Higgs parameter space. We illustrate our ideas with detailed collider analyses of two specific topologies: we propose search strategies for heavy Higgs decay to a pair of neutralinos, which can probe heavy Higgs bosons up to 1 TeV in the intermediate tan β(∼2 − 8) region, where standard heavy Higgs searches have no reach. Similarly, we show that targeted searches for heavy Higgs decays into staus can probe stau masses up to several hundred GeV. We also provide a general overview of additional decay channels that might be accessible at the high luminosity LHC. This motivates a broader program for LHC heavy Higgs searches.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  2. [2]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
  3. [3]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  4. [4]
    M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the \( t\overline{t} \) channel at the LHC, JHEP 11 (2016) 159 [arXiv:1608.07282] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the wedge: search strategies for extended Higgs sectors with heavy flavor final states, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Craig et al., The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
  9. [9]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  11. [11]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
  12. [12]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].
  13. [13]
    T. Han, Z. Liu and S. Su, Light neutralino dark matter: direct/indirect detection and collider searches, JHEP 08 (2014) 093 [arXiv:1406.1181] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Abdullin et al., Summary of the CMS potential for the Higgs boson discovery, Eur. Phys. J. C 39S2 (2005) 41 [INSPIRE].
  15. [15]
    F. Moortgat, S. Abdullin and D. Denegri, Observability of MSSM Higgs bosons via sparticle decay modes in CMS, hep-ph/0112046 [INSPIRE].
  16. [16]
    D. Denegri et al., Summary of the CMS discovery potential for the MSSM SUSY Higgses, hep-ph/0112045 [INSPIRE].
  17. [17]
    F. Moortgat, Observability of MSSM Higgs bosons decaying to sparticles at the LHC, in the proceedings of the 36th Rencontres de Moriond on QCD and High Energy Hadronic Interactions, March 17–24, Les Arcs, France (2001), hep-ph/0105081 [INSPIRE].
  18. [18]
    CMS collaboration, CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995.Google Scholar
  19. [19]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.K. Barman, B. Bhattacherjee, A. Chakraborty and A. Choudhury, Study of MSSM heavy Higgs bosons decaying into charginos and neutralinos, Phys. Rev. D 94 (2016) 075013 [arXiv:1607.00676] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Kulkarni and L. Lechner, Characterizing simplified models for heavy Higgs decays to supersymmetric particles, arXiv:1711.00056 [INSPIRE].
  22. [22]
    A.D. Medina and M.A. Schmidt, Enlarging regions of the MSSM parameter space for large tan β via SUSY decays of the heavy Higgs bosons, JHEP 08 (2017) 095 [arXiv:1706.04994] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Arganda, V. Martin-Lozano, A.D. Medina and N. Mileo, Potential discovery of staus through heavy Higgs boson decays at the LHC, JHEP 09 (2018) 056 [arXiv:1804.10698] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Bahl et al., MSSM Higgs boson searches at the LHC: benchmark scenarios for run 2 and beyond, arXiv:1808.07542 [INSPIRE].
  25. [25]
    T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, JHEP 11 (2013) 008 [arXiv:1303.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Baer et al., Radiatively-driven natural supersymmetry at the LHC, JHEP 12 (2013) 013 [Erratum ibid. 06 (2015) 053] [arXiv:1310.4858] [INSPIRE].
  27. [27]
    H. Baer et al., Natural SUSY with a bino- or wino-like LSP, Phys. Rev. D 91 (2015) 075005 [arXiv:1501.06357] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Dutta, Y. Gao and B. Shakya, Light Higgsino decays as a probe of the NMSSM, Phys. Rev. D 91 (2015) 035016 [arXiv:1412.2774] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-mass Higgs bosons in the NMSSM and their LHC implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    U. Ellwanger and M. Rodriguez-Vazquez, Simultaneous search for extra light and heavy Higgs bosons via cascade decays, JHEP 11 (2017) 008 [arXiv:1707.08522] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Baum, K. Freese, N.R. Shah and B. Shakya, NMSSM Higgs boson search strategies at the LHC and the mono-Higgs signature in particular, Phys. Rev. D 95 (2017) 115036 [arXiv:1703.07800] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Baum, N.R. Shah and K. Freese, The NMSSM is within reach of the LHC: mass correlations & decay signatures, arXiv:1901.02332 [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092012 [arXiv:1806.02293] [INSPIRE].
  34. [34]
    M. Carena, J. Osborne, N.R. Shah and C.E.M. Wagner, Supersymmetry and LHC missing energy signals, Phys. Rev. D 98 (2018) 115010 [arXiv:1809.11082] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. Lara, D.E. López-Fogliani and C. Muñoz, Electroweak superpartners scrutinized at the LHC in events with multi-leptons, Phys. Lett. B 790 (2019) 176 [arXiv:1810.12455] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
  37. [37]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].
  39. [39]
    CMS collaboration, Search for new phenomena with the M T2 variable in the all-hadronic final state produced in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 77 (2017) 710 [arXiv:1705.04650] [INSPIRE].
  40. [40]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2017) 029 [arXiv:1706.09933] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s} \) = 13 TeV pp collisions with ATLAS, Phys. Rev. D 98 (2018) 032009 [arXiv:1804.03602] [INSPIRE].
  42. [42]
    CMS collaboration, Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 079 [arXiv:1807.07799] [INSPIRE].
  43. [43]
    CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].
  44. [44]
    CMS collaboration, Search for supersymmetry in events with a τ lepton pair and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 151 [arXiv:1807.02048] [INSPIRE].
  45. [45]
    DELPHI collaboration, Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].
  46. [46]
    M. Carena et al., Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
  48. [48]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  49. [49]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  50. [50]
    A. Delgado, G. Nardini and M. Quirós, A light supersymmetric Higgs sector hidden by a standard model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
  52. [52]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the standard model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    H.E. Haber, The Higgs data and the Decoupling Limit, in the proceedings of the 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), February 13–16, Toyama, Japan (2013), arXiv:1401.0152 [INSPIRE].
  54. [54]
    A. Djouadi, M. Drees, P. Fileviez Perez and M. Muhlleitner, Loop induced Higgs and Z boson couplings to neutralinos and implications for collider and dark matter searches, Phys. Rev. D 65 (2002) 075016 [hep-ph/0109283] [INSPIRE].
  55. [55]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  56. [56]
    S. Profumo, T. Stefaniak and L. Stephenson Haskins, The not-so-well tempered neutralino, Phys. Rev. D 96 (2017) 055018 [arXiv:1706.08537] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-supersymmetry model, Phys. Rev. D 88 (2013) 075003 [arXiv:1208.0833] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Perelstein and B. Shakya, Fine-tuning implications of direct dark matter searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Carena et al., MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
  61. [61]
    S. Heinemeyer and C. Schappacher, Heavy Higgs decays into sfermions in the complex MSSM: a full one-loop analysis, Eur. Phys. J. C 75 (2015) 198 [arXiv:1410.2787] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Heinemeyer and C. Schappacher, Higgs decays into charginos and neutralinos in the complex MSSM: a full one-loop analysis, Eur. Phys. J. C 75 (2015) 230 [arXiv:1503.02996] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  64. [64]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  65. [65]
    M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
  66. [66]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  67. [67]
    M. Carena et al., LHC discovery potential for non-standard Higgs bosons in the 3b channel, JHEP 07 (2012) 091 [arXiv:1203.1041] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    ATLAS collaboration, Search for new phenomena in the Z(→ ℓℓ) + E Tmiss final state at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2016-056 (2016).
  69. [69]
    ATLAS collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 763 (2016) 251 [arXiv:1608.02372] [INSPIRE].
  70. [70]
    CMS collaboration, Search for dark matter in Z + E Tmiss events using 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-038 (2016).
  71. [71]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 776 (2018) 318 [arXiv:1708.09624] [INSPIRE].
  73. [73]
    CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \( \sqrt{s} \) = 13 TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].
  74. [74]
    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
  75. [75]
    CMS collaboration, Search for new physics in final states with two opposite-sign, same-flavor leptons, jets and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-16-034 (2017).
  76. [76]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in pp collision data at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-16-039 (2017).
  77. [77]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-17-004 (2017).
  78. [78]
    J. Alwall et al., MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  80. [80]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  81. [81]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    N. Craig et al., Heavy Higgs bosons at low tan β: from the LHC to 100 TeV, JHEP 01 (2017) 018 [arXiv:1605.08744] [INSPIRE].ADSGoogle Scholar
  84. [84]
    CMS collaboration, Projected performance of Higgs analyses at the HL-LHC for ECFA 2016, CMS-PAS-FTR-16-002 (2017).
  85. [85]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].
  86. [86]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  87. [87]
    R. Sato, K. Tobioka and N. Yokozaki, Enhanced diphoton signal of the Higgs boson and the muon g − 2 in gauge mediation models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Carena et al., Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  91. [91]
    T. Han, I.-W. Kim and J. Song, Kinematic cusps with two missing particles I: antler decay topology, Phys. Rev. D 87 (2013) 035003 [arXiv:1206.5633] [INSPIRE].ADSGoogle Scholar
  92. [92]
    T. Han, I.-W. Kim and J. Song, Kinematic cusps with two missing particles II: cascade decay topology, Phys. Rev. D 87 (2013) 035004 [arXiv:1206.5641] [INSPIRE].ADSGoogle Scholar
  93. [93]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a razor to dark matter parameter space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar
  94. [94]
    K. Agashe, R. Franceschini and D. Kim, Using energy peaks to measure new particle masses, JHEP 11 (2014) 059 [arXiv:1309.4776] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    H. An and L.-T. Wang, Opening up the compressed region of top squark searches at 13 TeV LHC, Phys. Rev. Lett. 115 (2015) 181602 [arXiv:1506.00653] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Macaluso, M. Park, D. Shih and B. Tweedie, Revealing compressed stops using high-momentum recoils, JHEP 03 (2016) 151 [arXiv:1506.07885] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    CMS collaboration, Search for supersymmetry in events with τ leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{\Big(}s\Big) \) = 13 TeV, CMS-PAS-SUS-17-002 (2017).
  98. [98]
    S. Baum and N.R. Shah, Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology, arXiv:1808.02667 [INSPIRE].
  99. [99]
    E. Arganda et al., Search strategies for pair production of heavy Higgs bosons decaying invisibly at the LHC, Nucl. Phys. B 929 (2018) 171 [arXiv:1710.07254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Stefania Gori
    • 1
    • 2
  • Zhen Liu
    • 3
    • 4
  • Bibhushan Shakya
    • 1
    • 2
    • 5
    • 6
    Email author
  1. 1.Santa Cruz Institute for Particle PhysicsUniversity of CaliforniaSanta CruzU.S.A.
  2. 2.Department of Physics, 1156 High St., University of California Santa CruzSanta CruzU.S.A.
  3. 3.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  4. 4.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  5. 5.Department of PhysicsUniversity of CincinnatiCincinnatiU.S.A.
  6. 6.Leinweber Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations