Advertisement

The one-loop spectral problem of strongly twisted \( \mathcal{N} \) = 4 Super Yang-Mills theory

  • Asger C. Ipsen
  • Matthias Staudacher
  • Leonard ZippeliusEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We investigate the one-loop spectral problem of γ-twisted, planar \( \mathcal{N} \) = 4 Super Yang-Mills theory in the double-scaling limit of infinite, imaginary twist angle and vanishing Yang-Mills coupling constant. This non-unitary model has recently been argued to be a simpler version of full-fledged planar \( \mathcal{N} \) = 4 SYM, while preserving the latter model’s conformality and integrability. We are able to derive for a number of sectors one-loop Bethe equations that allow finding anomalous dimensions for various subsets of diagonalizable operators. However, the non-unitarity of these deformed models results in a large number of non-diagonalizable operators, whose mixing is described by a very complicated structure of non-diagonalizable Jordan blocks of arbitrarily large size and with a priori unknown generalized eigenvalues. The description of these blocks by methods of integrability remains unknown.

Keywords

Bethe Ansatz Integrable Field Theories AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    Ö. Gürdoğan and V. Kazakov, New Integrable 4D Quantum Field Theories from Strongly Deformed Planar \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 201602 [arXiv:1512.06704] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Sieg and M. Wilhelm, On a CFT limit of planar γ i -deformed \( \mathcal{N} \) = 4 SYM theory, Phys. Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N} \) = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-l. Zhong, Yangian Symmetry for Bi-Scalar Loop Amplitudes, JHEP 05 (2018) 003 [arXiv:1704.01967] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Gromov, V. Kazakov, G. Korchemsky, S. Negro and G. Sizov, Integrability of Conformal Fishnet Theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-l. Zhong, Yangian Symmetry for Fishnet Feynman Graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-Deformed \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Kazakov, Quantum Spectral Curve of γ-twisted \( \mathcal{N} \) = 4 SYM theory and fishnet CFT, arXiv:1802.02160 [INSPIRE].
  10. [10]
    N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, arXiv:1808.02688 [INSPIRE].
  11. [11]
    B. Basso and D.-l. Zhong, Continuum limit of fishnet graphs and AdS σ-model, JHEP 01 (2019) 002 [arXiv:1806.04105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Basso and L.J. Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Kazakov and E. Olivucci, Biscalar Integrable Conformal Field Theories in Any Dimension, Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Derkachov, V. Kazakov and E. Olivucci, Basso-Dixon Correlators in Two-Dimensional Fishnet CFT, arXiv:1811.10623 [INSPIRE].
  15. [15]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Fokken, C. Sieg and M. Wilhelm, Non-conformality of γ i -deformed N = 4 SYM theory, J. Phys. A 47 (2014) 455401 [arXiv:1308.4420] [INSPIRE].zbMATHGoogle Scholar
  18. [18]
    A.B. Zamolodchikov, ‘Fishnetdiagrams as a completely integrable system, Phys. Lett. 97B (1980) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Mamroud and G. Torrents, RG stability of integrable fishnet models, JHEP 06 (2017) 012 [arXiv:1703.04152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    J.A. Minahan, Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N = 4 Super Yang-Mills, Lett. Math. Phys. 99 (2012) 33 [arXiv:1012.3983] [INSPIRE].
  21. [21]
    N. Beisert, The complete one loop dilatation operator of N = 4 superYang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Fokken, C. Sieg and M. Wilhelm, The complete one-loop dilatation operator of planar real β-deformed \( \mathcal{N} \) = 4 SYM theory, JHEP 07 (2014) 150 [arXiv:1312.2959] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les Houches, France, September 26–October 6, 1995, pp. 149–219 (1996) [hep-th/9605187] [INSPIRE].
  24. [24]
    C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function interaction, Phys. Rev. Lett. 19 (1967) 1312 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Beisert and R. Roiban, Beauty and the twist: The Bethe ansatz for twisted N = 4 SYM, JHEP 08 (2005) 039 [hep-th/0505187] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Staudacher, Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansátze and the R-Matrix Formalism, Lett. Math. Phys. 99 (2012) 191 [arXiv:1012.3990] [INSPIRE].
  27. [27]
    E.H. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals Phys. 16 (1961) 407 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Staudacher, The Factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    W. Hao, R.I. Nepomechie and A.J. Sommese, Singular solutions, repeated roots and completeness for higher-spin chains, J. Stat. Mech. 1403 (2014) P03024 [arXiv:1312.2982] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    W. Hao, R.I. Nepomechie and A.J. Sommese, Completeness of solutions of Bethes equations, Phys. Rev. E 88 (2013) 052113 [arXiv:1308.4645] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.M. Gainutdinov and R.I. Nepomechie, Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity, Nucl. Phys. B 909 (2016) 796 [arXiv:1603.09249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    F.H.L. Essler and V.E. Korepin, Higher conservation laws and algebraic Bethe ansatze for the supersymmetric t-J model, Phys. Rev. B 46 (1992) 9147 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Gromov, Introduction to the Spectrum of N = 4 SYM and the Quantum Spectral Curve, arXiv:1708.03648 [INSPIRE].
  35. [35]
    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Asger C. Ipsen
    • 1
  • Matthias Staudacher
    • 1
  • Leonard Zippelius
    • 1
    Email author
  1. 1.Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-AdlershofBerlinGermany

Personalised recommendations