Advertisement

Structure constants of twist-two light-ray operators in the triple Regge limit

  • I. BalitskyEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

The structure constants of twist-two operators with spin j in the BFKL limit g2 → 0, j → 1 and \( \frac{g^2}{j-1} \) ∼ 1 are found from the calculation of the three-point correlator of twist-two light-ray operators in the triple Regge limit. It is well known that the anomalous dimensions of twist-two operators in this limit are determined by the BFKL intercept. Similarly, the obtained structure constants are determined by an analytic function of three BFKL intercepts.

Keywords

Resummation Perturbative QCD Supersymmetric Gauge Theory Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  2. [2]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  3. [3]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N} \) = 4 Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    C. Marboe and V. Velizhanin, Twist-2 at seven loops in planar \( \mathcal{N} \) = 4 SYM theory: full result and analytic properties, JHEP 11 (2016) 013 [arXiv:1607.06047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, Quantum spectral curve at work: from small spin to strong coupling in \( \mathcal{N} \) = 4 SYM, JHEP 07 (2014) 156 [arXiv:1402.0871] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Kazakov and E. Sobko, Three-point correlators of twist-2 operators in N = 4 SYM at Born approximation, JHEP 06 (2013) 061 [arXiv:1212.6563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E. Sobko, A new representation for two- and three-point correlators of operators from sl(2) sector, JHEP 12 (2014) 101 [arXiv:1311.6957] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar N = 4 SYM Theory, arXiv:1505.06745 [INSPIRE].
  12. [12]
    B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM, arXiv:1608.04222 [INSPIRE].
  13. [13]
    D. Chicherin, A. Georgoudis, V. Gonçalves and R. Pereira, All five-loop planar four-point functions of half-BPS operators in \( \mathcal{N} \) = 4 SYM, JHEP 11 (2018) 069 [arXiv:1809.00551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in \( \mathcal{N} \) = 4 SYM: cusps in the ladder limit, JHEP 10 (2018) 060 [arXiv:1802.04237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013) [INSPIRE].
  16. [16]
    I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Balitsky, V. Kazakov and E. Sobko, Two-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation, arXiv:1310.3752 [INSPIRE].
  18. [18]
    A.V. Belitsky, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Superconformal operators in N = 4 superYang-Mills theory, Phys. Rev. D 70 (2004) 045021 [hep-th/0311104] [INSPIRE].ADSGoogle Scholar
  19. [19]
    V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
  20. [20]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Pomeron Eigenvalue at Three Loops in \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 115 (2015) 251601 [arXiv:1507.04010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    V.N. Velizhanin, BFKL Pomeron in the next-to-next-to-leading approximation in the planar N = 4 SYM theory, arXiv:1508.02857 [INSPIRE].
  22. [22]
    S. Caron-Huot and M. Herranen, High-energy evolution to three loops, JHEP 02 (2018) 058 [arXiv:1604.07417] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A.V. Kotikov and L.N. Lipatov, Pomeron in the N = 4 supersymmetric gauge model at strong couplings, Nucl. Phys. B 874 (2013) 889 [arXiv:1301.0882] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R.C. Brower, M.S. Costa, M. Djurić, T. Raben and C.-I. Tan, Strong Coupling Expansion for the Conformal Pomeron/Odderon Trajectories, JHEP 02 (2015) 104 [arXiv:1409.2730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    I. Balitsky, V. Kazakov and E. Sobko, Structure constant of twist-2 light-ray operators in the Regge limit, Phys. Rev. D 93 (2016) 061701 [arXiv:1506.02038] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    I. Balitsky, V. Kazakov and E. Sobko, Three-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation, arXiv:1511.03625 [INSPIRE].
  28. [28]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  29. [29]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].
  30. [30]
    Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  31. [31]
    G.P. Korchemsky, Conformal bootstrap for the BFKL Pomeron, Nucl. Phys. B 550 (1999) 397 [hep-ph/9711277] [INSPIRE].
  32. [32]
    L.N. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].Google Scholar
  33. [33]
    A.R. White, The Triangle anomaly in triple Regge limits, Phys. Rev. D 63 (2001) 016007 [hep-ph/9910458] [INSPIRE].
  34. [34]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    I. Balitsky, NLO BFKL and anomalous dimensions of light-ray operators, Int. J. Mod. Phys. Conf. Ser. 25 (2014) 1460024 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    M. Alfimov, N. Gromov and V. Kazakov, QCD Pomeron from AdS/CFT Quantum Spectral Curve, JHEP 07 (2015) 164 [arXiv:1408.2530] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
  40. [40]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
  41. [41]
    I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [INSPIRE].
  42. [42]
    G.A. Chirilli and Y.V. Kovchegov, Solution of the NLO BFKL Equation and a Strategy for Solving the All-Order BFKL Equation, JHEP 06 (2013) 055 [arXiv:1305.1924] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.A. Chirilli and Y.V. Kovchegov, γ * γ * Cross Section at NLO and Properties of the BFKL Evolution at Higher Orders, JHEP 05 (2014) 099 [Erratum ibid. 08 (2015) 075] [arXiv:1403.3384] [INSPIRE].
  44. [44]
    I.I. Balitsky and V.M. Braun, Nonlocal Operator Expansion for Structure Functions of e + e Annihilation, Phys. Lett. B 222 (1989) 123 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I.I. Balitsky and V.M. Braun, The Nonlocal operator expansion for inclusive particle production in e + e annihilation, Nucl. Phys. B 361 (1991) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    I.I. Balitsky and V.M. Braun, Valleys in Minkowski space and instanton induced cross-sections, Nucl. Phys. B 380 (1992) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Babansky and I. Balitsky, Scattering of color dipoles: From low to high-energies, Phys. Rev. D 67 (2003) 054026 [hep-ph/0212075] [INSPIRE].
  48. [48]
    I. Balitsky, Operator expansion for diffractive high-energy scattering, AIP Conf. Proc. 407 (1997) 953 [hep-ph/9706411] [INSPIRE].
  49. [49]
    Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, vol. 33, Cambridge University Press (2012) [INSPIRE].
  50. [50]
    V.A. Smirnov, Feynman integral calculus, Springer (2006) [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentOld Dominion UniversityNorfolkU.S.A.
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsU.S.A.

Personalised recommendations