Advertisement

Supersymmetry anomalies in \( \mathcal{N}=1 \) conformal supergravity

  • Ioannis PapadimitriouEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We solve the Wess-Zumino consistency conditions of \( \mathcal{N}=1 \) off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary a and c anomaly coefficients to leading non trivial order in the gravitino. Besides the well known Weyl and R-symmetry anomalies, we compute explicitly the fermionic \( \mathcal{Q} \)- and \( \mathcal{S} \)-supersymmetry anomalies. In particular, we show that \( \mathcal{Q} \)-supersymmetry is anomalous if and only if R-symmetry is anomalous. The \( \mathcal{Q} \)- and \( \mathcal{S} \)-supersymmetry anomalies give rise to an anomalous supersymmetry transformation for the supercurrent on curved backgrounds admitting Killing spinors, resulting in a deformed rigid supersymmetry algebra. Our results may have implications for supersymmetric localization and supersymmetry phenomenology. Analogous results are expected to hold in dimensions two and six and for other supergravity theories. The present analysis of the Wess-Zumino consistency conditions reproduces the holographic result of arXiv:1703.0429 and generalizes it to arbitrary a and c anomaly coefficients.

Keywords

Anomalies in Field and String Theories Global Symmetries Supergravity Models Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. 37B (1971) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Katsianis, I. Papadimitriou, K. Skenderis and M. Taylor, Anomalous Supersymmetry, arXiv:1902.06715 [INSPIRE].
  7. [7]
    O.S. An, J.U. Kang, J.C. Kim and Y.H. Ko, Quantum consistency in supersymmetric theories with R-symmetry in curved space, arXiv:1902.04525 [INSPIRE].
  8. [8]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038 [arXiv:1703.04299] [INSPIRE].
  9. [9]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, JHEP 12 (2017) 107 [arXiv:1703.09607] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    O.S. An, Y.H. Ko and S.-H. Won, Super-Weyl Anomaly from Holography and Rigid Supersymmetry Algebra on Two-Sphere, arXiv:1812.10209 [INSPIRE].
  11. [11]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
  13. [13]
    K. Landsteiner, Notes on Anomaly Induced Transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
  14. [14]
    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
  16. [16]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid Supersymmetric Backgrounds of Minimal Off-Shell Supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T.T. Dumitrescu and G. Festuccia, Exploring Curved Superspace (II), JHEP 01 (2013) 072 [arXiv:1209.5408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Kehagias and J.G. Russo, Global Supersymmetry on Curved Spaces in Various Dimensions, Nucl. Phys. B 873 (2013) 116 [arXiv:1211.1367] [INSPIRE].
  23. [23]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Samtleben, E. Sezgin and D. Tsimpis, Rigid 6D supersymmetry and localization, JHEP 03 (2013) 137 [arXiv:1212.4706] [INSPIRE].
  25. [25]
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorentzian Curved Spaces and Holography, Commun. Math. Phys. 327 (2014) 577 [arXiv:1207.2181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P. de Medeiros, Rigid supersymmetry, conformal coupling and twistor spinors, JHEP 09 (2014) 032 [arXiv:1209.4043] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Hristov, A. Tomasiello and A. Zaffaroni, Supersymmetry on Three-dimensional Lorentzian Curved Spaces and Black Hole Holography, JHEP 05 (2013) 057 [arXiv:1302.5228] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.M. Kuzenko, Symmetries of curved superspace, JHEP 03 (2013) 024 [arXiv:1212.6179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of Supersymmetric Partition Functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, From Rigid Supersymmetry to Twisted Holomorphic Theories, Phys. Rev. D 90 (2014) 085006 [arXiv:1407.2598] [INSPIRE].
  32. [32]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    I.N. McArthur, Super b(4) Coefficients in Supergravity, Class. Quant. Grav. 1 (1984) 245 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    L. Bonora, P. Pasti and M. Tonin, Cohomologies and Anomalies in Supersymmetric Theories, Nucl. Phys. B 252 (1985) 458 [INSPIRE].
  38. [38]
    I.L. Buchbinder and S.M. Kuzenko, Matter Superfields in External Supergravity: Green Functions, Effective Action and Superconformal Anomalies, Nucl. Phys. B 274 (1986) 653 [INSPIRE].
  39. [39]
    F. Brandt, Anomaly candidates and invariants of D = 4, N = 1 supergravity theories, Class. Quant. Grav. 11 (1994) 849 [hep-th/9306054] [INSPIRE].
  40. [40]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].
  41. [41]
    O. Piguet and S. Wolf, The Supercurrent trace identities of the N = 1, D = 4 superYang-Mills theory in the Wess-Zumino gauge, JHEP 04 (1998) 001 [hep-th/9802027] [INSPIRE].
  42. [42]
    J. Erdmenger and C. Rupp, Geometrical superconformal anomalies, hep-th/9809090 [INSPIRE].
  43. [43]
    J. Erdmenger and C. Rupp, Superconformal Ward identities for Green functions with multiple supercurrent insertions, Annals Phys. 276 (1999) 152 [hep-th/9811209] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    L. Bonora and S. Giaccari, Weyl transformations and trace anomalies in N = 1, D = 4 supergravities, JHEP 08 (2013) 116 [arXiv:1305.7116] [INSPIRE].
  45. [45]
    D. Butter and S.M. Kuzenko, Nonlocal action for the super-Weyl anomalies: A new representation, JHEP 09 (2013) 067 [arXiv:1307.1290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    D. Cassani and D. Martelli, Supersymmetry on curved spaces and superconformal anomalies, JHEP 10 (2013) 025 [arXiv:1307.6567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    R. Auzzi and B. Keren-Zur, Superspace formulation of the local RG equation, JHEP 05 (2015) 150 [arXiv:1502.05962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A. (1992).Google Scholar
  49. [49]
    O. Piguet and K. Sibold, Renormalized supersymmetry. The perturbation theory of N=1 supersymmetric theories in flat space-time, Prog.Math.Phys. 12 (1986) [INSPIRE].
  50. [50]
    H. Itoyama, V.P. Nair and H.-c. Ren, Supersymmetry Anomalies and Some Aspects of Renormalization, Nucl. Phys. B 262 (1985) 317 [INSPIRE].
  51. [51]
    E. Guadagnini and M. Mintchev, Chiral anomalies and supersymmetry, Nucl. Phys. B 269 (1986) 543 [INSPIRE].
  52. [52]
    O. Piguet and K. Sibold, The Anomaly in the Slavnov Identity for N = 1 Supersymmetric Yang-Mills Theories, Nucl. Phys. B 247 (1984) 484 [INSPIRE].
  53. [53]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge Theory of the Conformal and Superconformal Group, Phys. Lett. 69B (1977) 304 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal Unified Field Theory, Phys. Rev. Lett. 39 (1977) 1109 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].
  56. [56]
    P.K. Townsend and P. van Nieuwenhuizen, Simplifications of Conformal Supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].
  57. [57]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    B. de Wit, Conformal invariance in extended supergravity, in First School on Supergravity, Trieste, Italy, April 22-May 6, 1981, p. 0267 (1981) [INSPIRE].
  59. [59]
    B. de Wit, Multiplet calculus, in September School on Supergravity and Supersymmetry, Trieste, Italy, September 6-18, 1982 (1983).Google Scholar
  60. [60]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].
  62. [62]
    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. 76B (1978) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K.S. Stelle and P.C. West, Tensor Calculus for the Vector Multiplet Coupled to Supergravity, Phys. Lett. 77B (1978) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    V. Balasubramanian, E.G. Gimon, D. Minic and J. Rahmfeld, Four-dimensional conformal supergravity from AdS space, Phys. Rev. D 63 (2001) 104009 [hep-th/0007211] [INSPIRE].
  65. [65]
    B. de Wit, S. Murthy and V. Reys, BRST quantization and equivariant cohomology: localization with asymptotic boundaries, JHEP 09 (2018) 084 [arXiv:1806.03690] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].
  67. [67]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    Y. Nakayama, CP-violating CFT and trace anomaly, Nucl. Phys. B 859 (2012) 288 [arXiv:1201.3428] [INSPIRE].
  69. [69]
    I. Papadimitriou, Lectures on Holographic Renormalization, Springer Proc. Phys. 176 (2016) 131 [INSPIRE].CrossRefzbMATHGoogle Scholar
  70. [70]
    C. Imbimbo and D. Rosa, Topological anomalies for Seifert 3-manifolds, JHEP 07 (2015) 068 [arXiv:1411.6635] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS 5 black holes, arXiv:1810.11442 [INSPIRE].
  73. [73]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
  74. [74]
    F. Benini and P. Milan, Black holes in 4d \( \mathcal{N}=4 \) Super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  75. [75]
    M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, arXiv:1901.08091 [INSPIRE].
  76. [76]
    L. Bonora, P. Pasti and M. Bregola, Weyl Cocycles, Class. Quant. Grav. 3 (1986) 635 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics, Korea Institute for Advanced StudySeoulKorea

Personalised recommendations