Identification of long-lived charged particles using time-of-flight systems at the upgraded LHC detectors

  • O. CerriEmail author
  • S. Xie
  • C. Pena
  • M. Spiropulu
Open Access
Regular Article - Experimental Physics


We study the impact of precision timing detection systems on the LHC experiments’ long-lived particle search program during the HL-LHC era. We develop algorithms that allow us to reconstruct the mass of such charged particles and perform particle identification using the time-of-flight measurement. We investigate the reach for benchmark scenarios as a function of the timing resolution, and find sensitivity improvement of up to a factor of ten over searches that use ionization energy loss information, depending on the particle’s mass.


Hadron-Hadron scattering (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CMS collaboration, Technical proposal for a MIP timing detector in the CMS experiment phase 2 upgrade, CERN-LHCC-2017-027.
  2. [2]
    ATLAS collaboration, A High-Granularity Timing Detector (HGTD) in ATLAS: Performance at the HL-LHC, ATL-LARG-PROC-2018-003.
  3. [3]
    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Fairbairn, A.C. Kraan, D.A. Milstead, T. Sjöstrand, P.Z. Skands and T. Sloan, Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].
  5. [5]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, Search for heavy stable charged particles with 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-036.
  7. [7]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  8. [8]
    R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  10. [10]
    G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi, High Luminosity Large Hadron Collider HL-LHC, CERN Yellow Report (2015) 1 [arXiv:1705.08830] [INSPIRE].
  11. [11]
    S. Mersi, D. Abbaneo, N. De Maio and G. Hall, Software package for the characterization of Tracker layouts, in Proceedings, 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications (ICATPP 2011), Como, Italy, October 3–7, 2011, pp. 1015-1024 (2012) [INSPIRE].
  12. [12]
    A. Apresyan et al., Test Beam Studies of Silicon Timing for Use in Calorimetry, Nucl. Instrum. Meth. A 825 (2016) 62 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Apresyan et al., Studies of Uniformity of 50 μm Low-Gain Avalanche Detectors at the Fermilab Test Beam, Nucl. Instrum. Meth. A 895 (2018) 158 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Rose, Deterministic annealing for clustering, compression, classification, regression and related optimization problems, Proc. IEEE 86 (1998) 2210.CrossRefGoogle Scholar
  15. [15]
    E. Chabanat and N. Estre, Deterministic annealing for vertex finding at CMS, in Proceedings of 14th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2004), Interlaken, Switzerland, pp. 287–290 (2004) [INSPIRE].
  16. [16]
    R. Frühwirth, W. Waltenberger, K. Prokofiev, T. Speer and P. Vanlaer, New developments in vertex reconstruction for CMS, Nucl. Instrum. Meth. A 502 (2003) 699 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Contardo, M. Klute, J. Mans, L. Silvestris and J. Butler, Technical Proposal for the Phase-II Upgrade of the CMS Detector, CERN-LHCC-2015-010.
  18. [18]
    J. Liu, Z. Liu and L.-T. Wang, Long-lived particles at the LHC: catching them in time, arXiv:1805.05957 [INSPIRE].
  19. [19]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  20. [20]
    A.L. Read, Presentation of search results: The CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaU.S.A.
  2. 2.Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations