Advertisement

Mass deformed ABJM and \( \mathcal{P}\mathcal{T} \) symmetry

  • Louise AndersonEmail author
  • Matthew M. Roberts
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We consider real mass and FI deformations of ABJM theory preserving supersymmetry in the large N limit, and compare with holographic results. On the field theory side, the problems amounts to a spectral problem of a non-Hermitian Hamiltonian. For certain values of the deformation parameters this is invariant under an antiunitary operator (generalised \( \mathcal{P}\mathcal{T} \) symmetry), which ensures the partition function remains real and allows us to calculate the free energy using tools from statistical physics. The results obtained are compatible with previous work, the important new feature being that these are obtained directly from the real deformations, without analytic continuation.

Keywords

1/N Expansion Chern-Simons Theories Matrix Models Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998) 5243 [physics/9712001] [INSPIRE].
  15. [15]
    C.M. Bender, M.V. Berry and A. Mandilara, Generalized PT symmetry and real spectra, J. Phys. A 35 (2002) L467 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    N. Drukker and J. Felix, 3d mirror symmetry as a canonical transformation, JHEP 05 (2015) 004 [arXiv:1501.02268] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Mariño, Localization at large N in Chern-Simons-matter theories, J. Phys. A 50 (2017) 443007 [arXiv:1608.02959] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  18. [18]
    D.Z. Freedman and S.S. Pufu, The holography of F-maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Nosaka, Instanton effects in ABJM theory with general R-charge assignments, JHEP 03 (2016) 059 [arXiv:1512.02862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Honda, T. Nosaka, K. Shimizu and S. Terashima, Supersymmetry breaking in a large N gauge theory with gravity dual, arXiv:1807.08874 [INSPIRE].
  21. [21]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D.R. Gulotta, C.P. Herzog and T. Nishioka, The ABCDEFs of matrix models for supersymmetric Chern-Simons theories, JHEP 04 (2012) 138 [arXiv:1201.6360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Anderson and K. Zarembo, Quantum phase transitions in mass-deformed ABJM matrix model, JHEP 09 (2014) 021 [arXiv:1406.3366] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L. Anderson and J.G. Russo, ABJM theory with mass and FI deformations and quantum phase transitions, JHEP 05 (2015) 064 [arXiv:1502.06828] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Nosaka, K. Shimizu and S. Terashima, Large N behavior of mass deformed ABJM theory, JHEP 03 (2016) 063 [arXiv:1512.00249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Nosaka, K. Shimizu and S. Terashima, Mass deformed ABJM theory on three sphere in large N limit, JHEP 03 (2017) 121 [arXiv:1608.02654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Hillery, R.F. O’Connell, M.O. Scully and E.P. Wigner, Distribution functions in physics: fundamentals, Phys. Rept. 106 (1984) 121 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    Y. Hatsuda, Spectral zeta function and non-perturbative effects in ABJM Fermi-gas, JHEP 11 (2015) 086 [arXiv:1503.07883] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H.F. Jones and E.S. Moreira, Jr, Quantum and classical statistical mechanics of a class of non-Hermitian Hamiltonians, J. Phys. A 43 (2010) 055307 [arXiv:0905.2879] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    C.M. Bender, Introduction to PT-symmetric quantum theory, Contemp. Phys. 46 (2005) 277 [quant-ph/0501052] [INSPIRE].
  39. [39]
    C.M. Bender, PT-symmetric quantum theory, J. Phys. Conf. Ser. 631 (2015) 012002 [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    A. Voros, Asymptotic-expansions of stationary quantum states, Ann. Inst. H. Poincaré 26 (1977) 343.MathSciNetGoogle Scholar
  41. [41]
    B. Grammaticos and A. Voros, Semiclassical approximations for nuclear Hamiltonians. 1. Spin independent potentials, Annals Phys. 123 (1979) 359 [INSPIRE].
  42. [42]
    J.G. Kirkwood, Quantum statistics of almost classical assemblies, Phys. Rev. 44 (1933) 31 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Blackett LaboratoryImperial CollegeLondonU.K.

Personalised recommendations