Advertisement

Probing anomalous driving

  • Michael HaackEmail author
  • Debajyoti Sarkar
  • Amos Yarom
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We study the effects of driving a magnetically charged black brane solution of Einstein-Maxwell-Chern-Simons theory by a time dependent electric field. From a holographic perspective, we find that placing a sample in a background magnetic field and driving the system via a parallel electric field generates a charge current which may oscillate for long periods and (or) may exhibit non-Ohmic behavior. We discuss how these two effects manifest themselves in various types of quenches and in periodic driving of the sample.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, Lecture Notes in Physics volume 802, Springer, Germany (2010), arXiv:0908.2922.
  2. [2]
    J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59 (2010) 1063 [arXiv:0912.4034].ADSCrossRefGoogle Scholar
  3. [3]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Lamacraft and J. Moore, Potential insights into non-equilibrium behavior from atomic physics, arXiv:1106.3567.
  5. [5]
    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387.ADSzbMATHGoogle Scholar
  6. [6]
    W.H. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.R. Das and T. Morita, Kibble-Zurek scaling in holographic quantum quench: backreaction, JHEP 01 (2015) 084 [arXiv:1409.7361] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP 02 (2015) 017 [Erratum ibid. 07 (2015) 137] [arXiv:1410.6201] [INSPIRE].
  9. [9]
    T. Ishii, E. Kiritsis and C. Rosen, Thermalization in a holographic confining gauge theory, JHEP 08 (2015) 008 [arXiv:1503.07766] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Amiri-Sharifi, M. Ali-Akbari, A. Kishani-Farahani and N. Shafie, Double relaxation via AdS/CFT, Nucl. Phys. B 909 (2016) 778 [arXiv:1601.04281] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    R.C. Myers, M. Rozali and B. Way, Holographic quenches in a confined phase, J. Phys. A 50 (2017) 494002 [arXiv:1706.02438] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  12. [12]
    J. Cayssol, B. Dóra, F. Simon, R. Moessner, Floquet topological insulators, Phys. Status Sol. (RRL) 7 (2013) 101 [arXiv:1211.5623].CrossRefGoogle Scholar
  13. [13]
    D. Carpentier, P. Delplace, M. Fruchart and K. Gawedzki, Topological index for periodically driven time-reversal invariant 2d systems, Phys. Rev. Lett. 114 (2015) 106806.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Roy and F. Harper, Periodic table for floquet topological insulators, Phys. Rev. B 96 (2017) 155118.ADSCrossRefGoogle Scholar
  15. [15]
    F. Nathan and M.S. Rudner, Topological singularities and the general classification of floquet-bloch systems, New J. Phys. 17 (2015) 125014.ADSCrossRefGoogle Scholar
  16. [16]
    R. Wang, B. Wang, R. Shen, L. Sheng and D.Y. Xing, Floquet weyl semimetal induced by off-resonant light, Euroophys. Lett. 105 (2014) 17004.ADSCrossRefGoogle Scholar
  17. [17]
    C.-K. Chan et al., When chiral photons meet chiral fermionsPhotoinduced anomalous Hall effects in Weyl semimetals, Phys. Rev. Lett. 116 (2016) 026805 [arXiv:1509.05400] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Ebihara, K. Fukushima and T. Oka, Chiral pumping effect induced by rotating electric fields, Phys. Rev. B 93 (2016) 155107 [arXiv:1509.03673] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.V. Else, B. Bauer and C. Nayak, Floquet time crystals, Phys. Rev. Lett. 117 (2016) 090402.ADSCrossRefGoogle Scholar
  20. [20]
    I.-D. Potirniche et al., Floquet symmetry-protected topological phases in cold-atom systems, Phys. Rev. Lett. 119 (2017) 123601.ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H.C. Po, L. Fidkowski, A. Vishwanath and A.C. Potter, Radical Chiral Floquet phases in a periodically driven Kitaev model and beyond, Phys. Rev. B 96 (2017) 245116.ADSCrossRefGoogle Scholar
  22. [22]
    M.S. Rudner, N.H. Lindner, E. Berg and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3 (2013) 031005.Google Scholar
  23. [23]
    A. Baumgartner and M. Spillane, Phase transitions and conductivities of Floquet fluids, JHEP 09 (2018) 082 [arXiv:1802.05285] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    W.-J. Li, Y. Tian and H.-b. Zhang, Periodically driven holographic superconductor, JHEP 07 (2013) 030 [arXiv:1305.1600] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT, JHEP 11 (2013) 016 [arXiv:1308.2132] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Rangamani, M. Rozali and A. Wong, Driven holographic CFTs, JHEP 04 (2015) 093 [arXiv:1502.05726] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states I: a strongly coupled Weyl semimetal, JHEP 05 (2017) 127 [arXiv:1611.03702] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states II: Floquet condensation of vector mesons in nonequilibrium phase diagram, JHEP 06 (2018) 096 [arXiv:1712.06786] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Biasi, P. Carracedo, J. Mas, D. Musso and A. Serantes, Floquet scalar dynamics in global AdS, JHEP 04 (2018) 137 [arXiv:1712.07637] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    H. Liu and J. Sonner, Holographic systems far from equilibrium: a review, arXiv:1810.02367 [INSPIRE].
  31. [31]
    M. Ammon et al., Holographic quenches and anomalous transport, JHEP 09 (2016) 131 [arXiv:1607.06817] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: Part II, Eur. Phys. J. C 77 (2017) 194 [arXiv:1609.09054] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Ammon et al., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP 04 (2017) 067 [arXiv:1701.05565] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Sahoo and H.-U. Yee, Electrified plasma in AdS/CFT correspondence, JHEP 11 (2010) 095 [arXiv:1004.3541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W.A. Bardeen and B. Zumino, Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    O. Ovdat and A. Yarom, A modulated shear to entropy ratio, JHEP 11 (2014) 019 [arXiv:1407.6372] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically Anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995).Google Scholar
  46. [46]
    Y. Bu and M. Lublinsky, Linearly resummed hydrodynamics in a weakly curved spacetime, JHEP 04 (2015) 136 [arXiv:1502.08044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    Y. Bu, M. Lublinsky and A. Sharon, U(1) current from the AdS/CFT: diffusion, conductivity and causality, JHEP 04 (2016) 136 [arXiv:1511.08789] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    Y. Bu, T. Demircik and M. Lublinsky, Gradient resummation for nonlinear chiral transport: an insight from holography, Eur. Phys. J. C 79 (2019) 54 [arXiv:1807.11908] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    K. Landsteiner, Y. Liu and Y.-W. Sun, Negative magnetoresistivity in chiral fluids and holography, JHEP 03 (2015) 127 [arXiv:1410.6399] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A.M. Essin, J.E. Moore and D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102 (2009) 146805 [arXiv:0810.2998].ADSCrossRefGoogle Scholar
  51. [51]
    J. Xiong et al., Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi, Science 350 (2015) 413.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    Q. Li et al., Observation of the chiral magnetic effect in ZrTe 5, Nature Phys. 12 (2016) 550 [arXiv:1412.6543] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K. Landsteiner and Y. Liu, The holographic Weyl semi-metal, Phys. Lett. B 753 (2016) 453 [arXiv:1505.04772] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    P. Glorioso, H. Liu and S. Rajagopal, Global anomalies, discrete symmetries and hydrodynamic effective actions, JHEP 01 (2019) 043 [arXiv:1710.03768] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, SciPost Phys. 5 (2018) 053 [arXiv:1804.04654] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Dolui and T. Das, Theory of Weyl orbital semimetals and predictions of several materials classes, arXiv:1412.2607.
  58. [58]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  59. [59]
    E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  60. [60]
    E. D’Hoker and P. Kraus, Holographic metamagnetism, quantum criticality and crossover behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    E. D’Hoker and P. Kraus, Magnetic field induced quantum criticality via new asymptotically AdS 5 solutions, Class. Quant. Grav. 27 (2010) 215022 [arXiv:1006.2573] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    E. D’Hoker and P. Kraus, Charged magnetic brane correlators and twisted Virasoro algebras, Phys. Rev. D 84 (2011) 065010 [arXiv:1105.3998] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsLudwig Maximilians Universität MünchenMünchenGermany
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  3. 3.Department of PhysicsTechnionHaifaIsrael
  4. 4.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.

Personalised recommendations