Advertisement

Holographic excited states in AdS black holes

  • Marcelo Botta-CantcheffEmail author
  • Pedro J. Martínez
  • Guillermo A. Silva
Open Access
Regular Article - Theoretical Physics
  • 38 Downloads

Abstract

We have recently presented a geometry dual to a Schwinger-Keldysh closed time contour, with two equal β/2 length Euclidean sections, which can be thought of as dual to the Thermo Field Dynamics formulation of the boundary CFT. In this work we study non-perturbative holographic excitations of the thermal vacuum by turning on asymptotic Euclidean sources. In the large-N approximation the states are found to be thermal coherent states and we manage to compute its eigenvalues. We pay special attention to the high temperature regime where the manifold is built from pieces of Euclidean and Lorentzian black hole geometries. In this case, the real time segments of the Schwinger-Keldysh contour get connected by an Einstein-Rosen wormhole through the bulk, which we identify as the exterior of a single maximally extended black hole. The Thermal-AdS case is also considered but, the Lorentzian regions become disconnected, its results mostly follows from the zero temperature case.

Keywords

AdS-CFT Correspondence Black Holes Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP 05 (2005) 042 [hep-th/0412032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].
  8. [8]
    A. Christodoulou and K. Skenderis, Holographic construction of excited CFT states, JHEP 04 (2016) 096 [arXiv:1602.02039] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  10. [10]
    M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, Interacting fields in real-time AdS/CFT, JHEP 03 (2017) 148 [arXiv:1703.02384] [INSPIRE].
  11. [11]
    A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einsteins equations, JHEP 05 (2018) 147 [arXiv:1802.10103] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A. May and E. Hijano, The holographic entropy zoo, JHEP 10 (2018) 036 [arXiv:1806.06077] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Marolf, Microcanonical path integrals and the holography of small black hole interiors, JHEP 09 (2018) 114 [arXiv:1808.00394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement II: It from BC-bit, arXiv:1809.01197 [INSPIRE].
  15. [15]
    J. Sonner and B. Withers, Linear gravity from conformal symmetry, arXiv:1810.12923 [INSPIRE].
  16. [16]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a New York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, The gravity dual of real-time CFT at finite temperature, JHEP 11 (2018) 129 [arXiv:1808.10306] [INSPIRE].
  18. [18]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].Google Scholar
  20. [20]
    H. Umezawa, Advanced field theory: Micro, macro, and thermal physics, AIP, New York U.S.A. (1993).Google Scholar
  21. [21]
    Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. Proc. Suppl. 192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
  24. [24]
    A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Oz-Vogt, A. Mann and M. Revzen, Thermal coherent states and thermal squeezed states, J. Mod. Opt. 38 (1991) 2339.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Fubini, A.J. Hanson and R. Jackiw, New approach to field theory, Phys. Rev. D 7 (1973) 1732.ADSGoogle Scholar
  27. [27]
    T. Faulkner et al., Nonlinear gravity from entanglement in conformal field theories, JHEP 08 (2017) 057 [arXiv:1705.03026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Marolf et al., From Euclidean sources to lorentzian spacetimes in holographic conformal field theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Botta-Cantcheff and P.J. Martínez, Which quantum states are dual to classical spacetimes?, arXiv:1703.03483 [INSPIRE].
  30. [30]
    B. Mosk, Metric perturbations of extremal surfaces, Class. Quant. Grav. 35 (2018) 045013 [arXiv:1710.01316] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960.ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    A.L. Fitzpatrick and J. Kaplan, Scattering states in AdS/CFT, arXiv:1104.2597 [INSPIRE].
  33. [33]
    H. Matsumoto et al., Thermo field dynamics in interaction representation, Prog. Theor. Phys. 70 (183) 599.Google Scholar
  34. [34]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    A. Maloney, Geometric microstates for the three dimensional black hole?, arXiv:1508.04079 [INSPIRE].
  37. [37]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  38. [38]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].
  41. [41]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
  46. [46]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Relaxation in conformal field theory, Hawking-Page transition and quasinormal normal modes, Phys. Rev. D 67 (2003) 104026 [hep-th/0212308] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Phys. Rev. 48 (1935) 73 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    M. Kenmoku, M. Kuwata and K. Shigemoto, Normal modes and no zero mode theorem of scalar fields in BTZ black hole spacetime, Class. Quant. Grav. 25 (2008) 145016 [arXiv:0801.2044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Hemming and E. Keski-Vakkuri, Hawking radiation from AdS black holes, Phys. Rev. D 64 (2001) 044006 [gr-qc/0005115] [INSPIRE].
  51. [51]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  52. [52]
    W.-M. Zhang, D.H. Feng and R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys. 62 (1990) 867 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Belin, N. Iqbal and S.F. Lokhande, Bulk entanglement entropy in perturbative excited states, SciPost Phys. 5 (2018) 024 [arXiv:1805.08782] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco, U.S.A. (2004).zbMATHGoogle Scholar
  55. [55]
    M.C.B. Abdalla, A.L. Gadelha and D.L. Nedel, Closed string thermal torus from thermofield dynamics, Phys. Lett. B 613 (2005) 213 [hep-th/0410068].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Botta Cantcheff, D-branes as coherent states in the open string channel, Eur. Phys. J. C 55 (2008) 517 [arXiv:0710.3186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys. 16 (1975) 985 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    R.E. Arias, M. Botta Cantcheff and G.A. Silva, Lorentzian AdS, wormholes and holography, Phys. Rev. D 83 (2011) 066015 [arXiv:1012.4478] [INSPIRE].ADSGoogle Scholar
  60. [60]
    P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M. Botta Cantcheff, A.L. Gadelha, D.F.Z. Marchioro and D.L. Nedel, Entanglement from dissipation and Holographic Interpretation, Eur. Phys. J. C 78 (2018) 105 [arXiv:1702.02069] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Física de La Plata, CCT La Plata — CONICET, and Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations