Electroweak baryogenesis above the electroweak scale

  • Alfredo Glioti
  • Riccardo Rattazzi
  • Luca VecchiEmail author
Open Access
Regular Article - Theoretical Physics


Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the order of a new physics threshold Λ far above the Fermi scale, say, in the 100–1000 TeV range. This way the needed new sources of CP-violation, together with possible associated flavor-violating effects, decouple from low energy observables. The key ingredient is a new CP- and flavor-conserving sector at the Fermi scale that ensures the EW symmetry remains broken and sphalerons suppressed at all temperatures below Λ.

We analyze a minimal incarnation based on a linear O(N) model. We identify a specific large-N limit where the effects of the new sector are vanishingly small at zero temperature while being significant at finite temperature. This crucially helps the construction of realistic models. A number of accidental factors, ultimately related to the size of the relevant SM couplings, force N to be above ∼ 100. Such a large N may seem bizarre, but it does not affect the simplicity of the model and in fact it allows us to carry out a consistent re-summation of the leading contributions to the thermal effective potential. Extensions of the SM Higgs sector can be compatible with smaller values N ∼ 20–30.

Collider signatures are all parametrically suppressed by inverse powers of N and may be challenging to probe, but present constraints from direct dark matter searches cannot be accommodated in the minimal model. We discuss various extensions that satisfy all current bounds. One of these involves a new gauge force confining at scales between ∼ 1 GeV and the weak scale.


Beyond Standard Model 1/N Expansion Cosmology of Theories beyond the SM Thermal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Dimopoulos and L. Susskind, On the baryon number of the universe, Phys. Rev. D 18 (1978) 4500 [INSPIRE].
  2. [2]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36.ADSCrossRefGoogle Scholar
  3. [3]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Weak scale baryogenesis, Phys. Lett. B 245 (1990) 561 [INSPIRE].
  4. [4]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  5. [5]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355.Google Scholar
  6. [6]
    V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM baryogenesis and electric dipole moments: an update on the phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron rate in the minimal standard model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N.S. Manton, Topology in the Weinberg-Salam theory, Phys. Rev. D 28 (1983) 2019 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Kleihaus, J. Kunz and Y. Brihaye, The electroweak sphaleron at physical mixing angle, Phys. Lett. B 273 (1991) 100 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.D. Moore, C.-r. Hu and B. Müller, Chern-Simons number diffusion with hard thermal loops, Phys. Rev. D 58 (1998) 045001 [hep-ph/9710436] [INSPIRE].
  12. [12]
    P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Weinberg, Gauge and global symmetries at high temperature, Phys. Rev. D 9 (1974) 3357 [INSPIRE].ADSGoogle Scholar
  14. [14]
    R.N. Mohapatra and G. Senjanović, Broken symmetries at high temperature, Phys. Rev. D 20 (1979) 3390 [INSPIRE].
  15. [15]
    R.N. Mohapatra and G. Senjanović, Soft CP-violation at High temperature, Phys. Rev. Lett. 42 (1979) 1651 [INSPIRE].
  16. [16]
    P. Salomonson, B.S. Skagerstam and A. Stern, On the primordial monopole problem in grand unified theories, Phys. Lett. B 151 (1985) 243.ADSCrossRefGoogle Scholar
  17. [17]
    G.R. Dvali, A. Melfo and G. Senjanović, Is there a monopole problem?, Phys. Rev. Lett. 75 (1995) 4559 [hep-ph/9507230] [INSPIRE].
  18. [18]
    S. Dodelson and L.M. Widrow, Baryon symmetric baryogenesis, Phys. Rev. Lett. 64 (1990) 340 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.J. Ramsey-Musolf, P. Winslow and G. White, Color breaking baryogenesis, Phys. Rev. D 97 (2018) 123509 [arXiv:1708.07511] [INSPIRE].
  20. [20]
    P. Meade and H. Ramani, Unrestored electroweak symmetry, Phys. Rev. Lett. 122 (2019) 041802 [arXiv:1807.07578] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. Baldes and G. Servant, High scale electroweak phase transition: baryogenesis & symmetry non-restoration, JHEP 10 (2018) 053 [arXiv:1807.08770] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
  23. [23]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  24. [24]
    L. Senatore, Hierarchy from baryogenesis, Phys. Rev. D 73 (2006) 043513 [hep-ph/0507257] [INSPIRE].
  25. [25]
    P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289.Google Scholar
  27. [27]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].ADSGoogle Scholar
  29. [29]
    D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
  31. [31]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
  32. [32]
    A. Beniwal et al., Combined analysis of effective Higgs portal dark matter models, Phys. Rev. D 93 (2016) 115016 [arXiv:1512.06458] [INSPIRE].ADSGoogle Scholar
  33. [33]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  34. [34]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  35. [35]
    S. Tremaine and J.E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  38. [38]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  39. [39]
    B. Keren-Zur et al., On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The bearable compositeness of leptons, JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Arkani-Hamed et al., Solving the hierarchy problem at reheating with a large number of degrees of freedom, Phys. Rev. Lett. 117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Cohen, R.T. D’Agnolo and M. Low, Freezing in the hierarchy problem, Phys. Rev. D 99 (2019) 031702 [arXiv:1808.02031] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Belyaev et al., Anatomy of the inert two Higgs doublet model in the light of the LHC and non-LHC dark matter searches, Phys. Rev. D 97 (2018) 035011 [arXiv:1612.00511] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R. Contino, A. Mitridate, A. Podo and M. Redi, Gluequark dark matter, JHEP 02 (2019) 187 [arXiv:1811.06975] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Gross, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological abundance of colored relics, Phys. Rev. D 99 (2019) 016024 [arXiv:1811.08418] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Particle Physics Laboratory, Institute of Physics, EPFLLausanneSwitzerland

Personalised recommendations