Advertisement

Late time Wilson lines

  • Per KrausEmail author
  • Allic Sivaramakrishnan
  • River Snively
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

In the AdS3/CFT2 correspondence, physical interest attaches to understanding Virasoro conformal blocks at large central charge and in a kinematical regime of large Lorentzian time separation, tc. However, almost no analytical information about this regime is presently available. By employing the Wilson line representation we derive new results on conformal blocks at late times, effectively resumming all dependence on t/c. This is achieved in the context of “light-light” blocks, as opposed to the richer, but much less tractable, “heavy-light” blocks. The results exhibit an initial decay, followed by erratic behavior and recurrences. We also connect this result to gravitational contributions to anomalous dimensions of double trace operators by using the Lorentzian inversion formula to extract the latter. Inverting the stress tensor block provides a pedagogical example of inversion formula machinery.

Keywords

AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
  2. [2]
    J. Polchinski, The Black Hole Information Problem, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., 1-26 June 2015, World Scientific (2017), pp. 353-397 [arXiv:1609.04036] [INSPIRE].
  3. [3]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  5. [5]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].
  7. [7]
    H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP 09 (2017) 102 [arXiv:1703.09727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic Conformal Partial Waves as Gravitational Open Wilson Networks, JHEP 06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Besken, A. Hegde, E. Hijano and P. Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP 08 (2016) 099 [arXiv:1603.07317] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro Blocks from Wilson Lines and Background-Independent Operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Besken, A. Hegde and P. Kraus, Anomalous dimensions from quantum Wilson lines, arXiv:1702.06640 [INSPIRE].
  12. [12]
    Y. Hikida and T. Uetoko, Three Point Functions in Higher Spin AdS 3 Holography with 1/N Corrections, Universe 3 (2017) 70 [arXiv:1708.02017] [INSPIRE].
  13. [13]
    Y. Hikida and T. Uetoko, Correlators in higher-spin AdS 3 holography from Wilson lines with loop corrections, Prog. Theor. Exp. Phys. 2017 (2017) 113B03 [arXiv:1708.08657] [INSPIRE].
  14. [14]
    Y. Hikida and T. Uetoko, Conformal blocks from Wilson lines with loop corrections, Phys. Rev. D 97 (2018) 086014 [arXiv:1801.08549] [INSPIRE].
  15. [15]
    M. Besken, E. D’Hoker, A. Hegde and P. Kraus, Renormalization of gravitational Wilson lines, arXiv:1810.00766 [INSPIRE].
  16. [16]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].
  18. [18]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].
  21. [21]
    C. Sleight and M. Taronna, Anomalous Dimensions from Crossing Kernels, JHEP 11 (2018) 089 [arXiv:1807.05941] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP 11 (2018) 052 [arXiv:1806.10919] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops and 6j Symbols, JHEP 03 (2019) 052 [arXiv:1808.00612] [INSPIRE].
  24. [24]
    E. Perlmutter, Virasoro conformal blocks in closed form, JHEP 08 (2015) 088 [arXiv:1502.07742] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].
  26. [26]
    M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and \( {\mathcal{W}}_N \) conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].
  28. [28]
    A. Hegde, P. Kraus and E. Perlmutter, General Results for Higher Spin Wilson Lines and Entanglement in Vasiliev Theory, JHEP 01 (2016) 176 [arXiv:1511.05555] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].
  32. [32]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Per Kraus
    • 1
    Email author
  • Allic Sivaramakrishnan
    • 1
  • River Snively
    • 1
  1. 1.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations