The role of leptons in electroweak baryogenesis

  • Jordy de Vries
  • Marieke Postma
  • Jorinde van de VisEmail author
Open Access
Regular Article - Theoretical Physics


We investigate the role of leptons in electroweak baryogenesis by studying a relatively simple framework inspired by effective field theory that satisfies all Sakharov conditions. In particular, we study the effectiveness of CP-violating source terms induced by dimension-six Yukawa interactions for quarks and charged leptons. Despite the relatively small Yukawa coupling, CP-violating source terms involving taus are quite effective and can account for the observed matter-antimatter asymmetry. We obtain analytical and numerical expressions for the total baryon asymmetry, the former providing important insight into what makes lepton CP violation relatively effective compared to quark CP violation. Leptons also play an important role if the CP-violating source involves top quarks. While the tau Yukawa coupling in the Standard Model is small, it significantly enhances the baryon asymmetry by transferring the chiral asymmetry in quarks, which is washed out by strong sphalerons, to a chiral asymmetry in leptons. We conclude that leptons should not be ignored even if CP violation is limited to the quark sector. The role of leptons can be further increased in scenarios of new physics with additional chiral-symmetry-breaking interactions between quarks and leptons, as can happen in models with additional Higgs bosons or leptoquarks. Finally, we study CP-violating dimension-six Yukawa interactions for lighter quarks and leptons but conclude that these lead to too small baryon asymmetries.


Cosmology of Theories beyond the SM Beyond Standard Model CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  3. [3]
    A. Arhrib, P.M. Ferreira and R. Santos, Are there hidden scalars in LHC Higgs results?, JHEP 03 (2014) 053 [arXiv:1311.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].
  5. [5]
    W.-F. Chang, T. Modak and J.N. Ng, Signal for a light singlet scalar at the LHC, Phys. Rev. D 97 (2018) 055020 [arXiv:1711.05722] [INSPIRE].ADSGoogle Scholar
  6. [6]
    CMS collaboration, A search for beyond Standard Model light bosons decaying into muon pairs, CMS-PAS-HIG-16-035, CERN, Geneva, Switzerland (2016).
  7. [7]
    C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    I. Brivio and M. Trott, The Standard Model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Han and Y. Li, Genuine CP-odd observables at the LHC, Phys. Lett. B 683 (2010) 278 [arXiv:0911.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Ellis, Discrete glimpses of the physics landscape after the Higgs discovery, J. Phys. Conf. Ser. 631 (2015) 012001 [arXiv:1501.05418] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Askew, P. Jaiswal, T. Okui, H.B. Prosper and N. Sato, Prospect for measuring the CP phase in the hττ coupling at the LHC, Phys. Rev. D 91 (2015) 075014 [arXiv:1501.03156] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP 03 (2017) 030 [arXiv:1612.01270] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak baryogenesis and the Standard Model effective field theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].CrossRefzbMATHGoogle Scholar
  17. [17]
    LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
  18. [18]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  19. [19]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.M. Cline, Baryogenesis, in Les Houches Summer SchoolSession 86: particle physics and cosmology. The fabric of spacetime, Les Houches, France, 31 July–25 August 2006 [hep-ph/0609145] [INSPIRE].
  21. [21]
    M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
  22. [22]
    G.A. White, A pedagogical introduction to electroweak baryogenesis, IOP Publishing, U.K. (2016) [INSPIRE].
  23. [23]
    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S.J. Huber, M. Pospelov and A. Ritz, Electric dipole moment constraints on minimal electroweak baryogenesis, Phys. Rev. D 75 (2007) 036006 [hep-ph/0610003] [INSPIRE].
  25. [25]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
  26. [26]
    M. Joyce, T. Prokopec and N. Turok, Efficient electroweak baryogenesis from lepton transport, Phys. Lett. B 338 (1994) 269 [hep-ph/9401352] [INSPIRE].
  27. [27]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G.F. Giudice and M.E. Shaposhnikov, Strong sphalerons and electroweak baryogenesis, Phys. Lett. B 326 (1994) 118 [hep-ph/9311367] [INSPIRE].
  29. [29]
    S. Tulin and P. Winslow, Anomalous B meson mixing and baryogenesis, Phys. Rev. D 84 (2011) 034013 [arXiv:1105.2848] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].
  32. [32]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D 81 (2010) 063506 [arXiv:0905.4509] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C.-W. Chiang, K. Fuyuto and E. Senaha, Electroweak baryogenesis with lepton flavor violation, Phys. Lett. B 762 (2016) 315 [arXiv:1607.07316] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H.-K. Guo, Y.-Y. Li, T. Liu, M. Ramsey-Musolf and J. Shu, Lepton-flavored electroweak baryogenesis, Phys. Rev. D 96 (2017) 115034 [arXiv:1609.09849] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends, Phys. Rev. D 56 (1997) 3888 [hep-lat/9704013] [INSPIRE].
  36. [36]
    M. Laine and K. Rummukainen, Whats new with the electroweak phase transition?, Nucl. Phys. Proc. Suppl. 73 (1999) 180 [hep-lat/9809045] [INSPIRE].
  37. [37]
    Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [INSPIRE].
  38. [38]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].
  39. [39]
    J.R. Espinosa and M. Quirós, The electroweak phase transition with a singlet, Phys. Lett. B 305 (1993) 98 [hep-ph/9301285] [INSPIRE].
  40. [40]
    J.R. Espinosa and M. Quirós, Novel effects in electroweak breaking from a hidden sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
  41. [41]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended Standard Model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.R. Espinosa, T. Konstandin, J.M. No and M. Quirós, Some cosmological implications of hidden sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the Standard Model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.I. Bochkarev, S.V. Kuzmin and M.E. Shaposhnikov, Electroweak baryogenesis and the Higgs boson mass problem, Phys. Lett. B 244 (1990) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    N. Turok and J. Zadrozny, Phase transitions in the two doublet model, Nucl. Phys. B 369 (1992) 729 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.T. Davies, C.D. froggatt, G. Jenkins and R.G. Moorhouse, Baryogenesis constraints on two Higgs doublet models, Phys. Lett. B 336 (1994) 464 [INSPIRE].
  48. [48]
    J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].
  49. [49]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    G.C. Dorsch, S.J. Huber, T. Konstandin and J.M. No, A second Higgs doublet in the early universe: baryogenesis and gravitational waves, JCAP 05 (2017) 052 [arXiv:1611.05874] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.O. Andersen et al., Nonperturbative analysis of the electroweak phase transition in the two Higgs doublet model, Phys. Rev. Lett. 121 (2018) 191802 [arXiv:1711.09849] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Gorda, A. Helset, L. Niemi, T.V.I. Tenkanen and D.J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P.H. Damgaard, A. Haarr, D. O’Connell and A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model, JHEP 02 (2016) 107 [arXiv:1512.01963] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  55. [55]
    P. John, Bubble wall profiles with more than one scalar field: a numerical approach, Phys. Lett. B 452 (1999) 221 [hep-ph/9810499] [INSPIRE].
  56. [56]
    M.B. Gavela, P. Hernández, J. Orloff and O. Pene, Standard Model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].
  57. [57]
    M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard Model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].
  58. [58]
    P. Huet and E. Sather, Electroweak baryogenesis and Standard Model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].
  59. [59]
    T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Computing the temperature dependence of effective CP-violation in the Standard Model, JHEP 11 (2012) 076 [arXiv:1208.5609] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].
  61. [61]
    J.M. Cline, Is electroweak baryogenesis dead?, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170116 [arXiv:1704.08911] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Joyce, T. Prokopec and N. Turok, Electroweak baryogenesis from a classical force, Phys. Rev. Lett. 75 (1995) 1695 [Erratum ibid. 75 (1995) 3375] [hep-ph/9408339] [INSPIRE].
  63. [63]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].
  64. [64]
    Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Brod and E. Stamou, Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, arXiv:1810.12303 [INSPIRE].
  66. [66]
    Belle collaboration, Search for the electric dipole moment of the τ lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].
  67. [67]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP 05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Brod and D. Skodras, Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP 01 (2019) 233 [arXiv:1811.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    ATLAS collaboration, Cross-section measurements of the Higgs boson decaying to a pair of τ leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-021, CERN, Geneva, Switzerland (2018).
  70. [70]
    D.J.H. Chung, B. Garbrecht, M. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Carena, M. Quirós, M. Seco and C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys. B 650 (2003) 24 [hep-ph/0208043] [INSPIRE].
  72. [72]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Diffusion enhances spontaneous electroweak baryogenesis, Phys. Lett. B 336 (1994) 41 [hep-ph/9406345] [INSPIRE].
  73. [73]
    G.A. White, General analytic methods for solving coupled transport equations: from cosmology to beyond, Phys. Rev. D 93 (2016) 043504 [arXiv:1510.03901] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
  75. [75]
    G.D. Moore and K. Rummukainen, Classical sphaleron rate on fine lattices, Phys. Rev. D 61 (2000) 105008 [hep-ph/9906259] [INSPIRE].
  76. [76]
    G.D. Moore, Sphaleron rate in the symmetric electroweak phase, Phys. Rev. D 62 (2000) 085011 [hep-ph/0001216] [INSPIRE].
  77. [77]
    P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].
  78. [78]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa interactions and supersymmetric electroweak baryogenesis, Phys. Rev. Lett. 102 (2009) 061301 [arXiv:0808.1144] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    L. Fromme and S.J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049 [hep-ph/0604159] [INSPIRE].
  80. [80]
    F.P. Huang, P.-H. Gu, P.-F. Yin, Z.-H. Yu and X. Zhang, Testing the electroweak phase transition and electroweak baryogenesis at the LHC and a circular electron-positron collider, Phys. Rev. D 93 (2016) 103515 [arXiv:1511.03969] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Joyce, T. Prokopec and N. Turok, Constraints and transport in electroweak baryogenesis, Phys. Lett. B 339 (1994) 312 [hep-ph/9401351] [INSPIRE].
  82. [82]
    A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Amherst Center for Fundamental Interactions, Department of PhysicsUniversity of MassachusettsAmherstU.S.A.
  2. 2.RIKEN BNL Research CenterBrookhaven National LaboratoryUptonU.S.A.
  3. 3.Nikhef, Theory GroupAmsterdamThe Netherlands

Personalised recommendations