Advertisement

Hunting for vectorlike quarks

  • Radovan Dermíšek
  • Enrico Lunghi
  • Seodong ShinEmail author
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

We analyze decays of vectorlike quarks in extensions of the standard model and a two Higgs doublet model. We identify several typical patterns of branching ratios of the lightest new up-type quark, t4, and down-type quark, b4, depending on the structure of Yukawa couplings that mix the vectorlike and standard model quarks (we assume only mixing with the third generation) and also on their doublet or singlet nature. We find that decays into heavy neutral or charged Higgs bosons, when kinematically open, can easily dominate and even be close to 100%: b4Hb at medium to large tan β, t4Ht at small tan β and b4H±t, t4H±b at both large and small tan β. The pair production of vectorlike quarks leads to 6t, 4t2b, 2t4b and 6b final states. The decay modes into W, Z and h follow the pattern expected from the Goldstone boson equivalence limit that we generalize to scenarios with all possible couplings. We also discuss in detail the structure of Yukawa couplings required to significantly deviate from the pattern characteristic of the Goldstone boson equivalence limit that can result in essentially arbitrary branching ratios.

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018)089 [arXiv:1803.09678] [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE].
  3. [3]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].
  4. [4]
    CMS collaboration, Search for single production of vector-like quarks decaying to a b quark and a Higgs boson, JHEP 06 (2018) 031 [arXiv:1802.01486] [INSPIRE].
  5. [5]
    CMS collaboration, Search for pair production of vector-like quarks in the \( bW\overline{b}W \) channel from proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 779 (2018) 82 [arXiv:1710.01539] [INSPIRE].
  6. [6]
    CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s}=13 \) TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for single production of a vector-like B quark decaying into a bottom quark and a Higgs boson which decays into a pair of photons, ATLAS-CONF-2018-024, CERN, Geneva, Switzerland (2018).
  9. [9]
    CMS collaboration, Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 781 (2018) 574 [arXiv:1708.01062] [INSPIRE].
  10. [10]
    CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 79 (2019) 90 [arXiv:1809.08597] [INSPIRE].
  11. [11]
    CMS collaboration, Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton+jets final state in pp collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 79 (2019) 208 [arXiv:1812.06489] [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ±ντ in the τ+jets and τ+lepton final states with 36 fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  14. [14]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
  15. [15]
    K.S. Babu and J.C. Pati, The problems of unification mismatch and low α 3 : a solution with light vector-like matter, Phys. Lett. B 384 (1996) 140 [hep-ph/9606215] [INSPIRE].
  16. [16]
    C.F. Kolda and J. March-Russell, Low-energy signatures of semiperturbative unification, Phys. Rev. D 55 (1997) 4252 [hep-ph/9609480] [INSPIRE].
  17. [17]
    D. Ghilencea, M. Lanzagorta and G.G. Ross, Strong unification, Phys. Lett. B 415 (1997) 253 [hep-ph/9707462] [INSPIRE].
  18. [18]
    G. Amelino-Camelia, D. Ghilencea and G.G. Ross, The effect of Yukawa couplings on unification predictions and the nonperturbative limit, Nucl. Phys. B 528 (1998) 35 [hep-ph/9804437] [INSPIRE].
  19. [19]
    M. Bastero-Gil and B. Brahmachari, Semiperturbative unification with extra vector-like families, Nucl. Phys. B 575 (2000) 35 [hep-ph/9907318] [INSPIRE].
  20. [20]
    R. Dermisek, Insensitive unification of gauge couplings, Phys. Lett. B 713 (2012) 469 [arXiv:1204.6533] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Dermisek, Unification of gauge couplings in the Standard Model with extra vectorlike families, Phys. Rev. D 87 (2013) 055008 [arXiv:1212.3035] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Dermisek and N. McGinnis, Mass scale of vectorlike matter and superpartners from IR fixed point predictions of gauge and top Yukawa couplings, Phys. Rev. D 97 (2018) 055009 [arXiv:1712.03527] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Dermíšek and N. McGinnis, Top-bottom-tau Yukawa coupling unification in the MSSM plus one vectorlike family and fermion masses as IR fixed points, Phys. Rev. D 99 (2019) 035033 [arXiv:1810.12474] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Dermisek, Loop suppressed electroweak symmetry breaking and naturally heavy superpartners, Phys. Rev. D 95 (2017) 015002 [arXiv:1606.09031] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Moroi, H. Murayama and T. Yanagida, The Weinberg angle without grand unification, Phys. Rev. D 48 (1993) R2995 [hep-ph/9306268] [INSPIRE].
  28. [28]
    R. Dermíšek and N. McGinnis, Seven largest couplings of the Standard Model as IR fixed points, arXiv:1812.05240 [INSPIRE].
  29. [29]
    D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].
  30. [30]
    R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev. D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Dermisek, S.-G. Kim and A. Raval, Znear the Z-pole, Phys. Rev. D 85 (2012) 075022 [arXiv:1201.0315] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].
  33. [33]
    K. Kannike, M. Raidal, D.M. Straub and A. Strumia, Anthropic solution to the magnetic muon anomaly: the charged see-saw, JHEP 02 (2012) 106 [Erratum ibid. 10 (2012) 136] [arXiv:1111.2551] [INSPIRE].
  34. [34]
    R. Dermisek and A. Raval, Explanation of the muon g − 2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D 88 (2013) 013017 [arXiv:1305.3522] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Dermisek, A. Raval and S. Shin, Effects of vectorlike leptons on h → 4ℓ and the connection to the muon g − 2 anomaly, Phys. Rev. D 90 (2014) 034023 [arXiv:1406.7018] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Dermisek, E. Lunghi and S. Shin, Contributions of flavor violating couplings of a Higgs boson to ppWW, JHEP 08 (2015) 126 [arXiv:1503.08829] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Dermisek, E. Lunghi and S. Shin, Two Higgs doublet model with vectorlike leptons and contributions to ppWW and HWW, JHEP 02 (2016) 119 [arXiv:1509.04292] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Dermisek, E. Lunghi and S. Shin, New decay modes of heavy Higgs bosons in a two Higgs doublet model with vectorlike leptons, JHEP 05 (2016) 148 [arXiv:1512.07837] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Dermisek, E. Lunghi and S. Shin, New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons, JHEP 10 (2016) 081 [arXiv:1608.00662] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Dermisek, J.P. Hall, E. Lunghi and S. Shin, Limits on vectorlike leptons from searches for anomalous production of multi-lepton events, JHEP 12 (2014) 013 [arXiv:1408.3123] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    X. Cid Vidal et al., Beyond the Standard Model physics at the HL-LHC and HE-LHC, arXiv:1812.07831 [INSPIRE].
  42. [42]
    G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and decays of new heavy vector-like top partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].
  44. [44]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.K. Alok, S. Banerjee, D. Kumar and S. Uma Sankar, Flavor signatures of isosinglet vector-like down quark model, Nucl. Phys. B 906 (2016) 321 [arXiv:1402.1023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Banerjee, D. Barducci, G. Bélanger and C. Delaunay, Implications of a high-mass diphoton resonance for heavy quark searches, JHEP 11 (2016) 154 [arXiv:1606.09013] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B.A. Dobrescu and F. Yu, Exotic signals of vectorlike quarks, J. Phys. G 45 (2018) 08LT01 [arXiv:1612.01909] [INSPIRE].
  48. [48]
    M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.H. Kim and I.M. Lewis, Loop induced single top partner production and decay at the LHC, JHEP 05 (2018) 095 [arXiv:1803.06351] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Das, T. Mondal and S.K. Rai, Non-standard signatures of vector-like quarks in a leptophobic 221 model, arXiv:1807.08160 [INSPIRE].
  51. [51]
    H. Alhazmi, J.H. Kim, K. Kong and I.M. Lewis, Shedding light on top partner at the LHC, JHEP 01 (2019) 139 [arXiv:1808.03649] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D. Liu, L.-T. Wang and K.-P. Xie, Prospects of searching for composite resonances at the LHC and beyond, JHEP 01 (2019) 157 [arXiv:1810.08954] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  54. [54]
    C.-Y. Chen, S. Dawson and E. Furlan, Vectorlike fermions and Higgs effective field theory revisited, Phys. Rev. D 96 (2017) 015006 [arXiv:1703.06134] [INSPIRE].ADSGoogle Scholar
  55. [55]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36.1 fb −1 pp collision data at the center-of-mass energy of 13 TeV with the ATLAS detector, ATLAS-CONF-2017-045, CERN, Geneva, Switzerland (2017).
  56. [56]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031, CERN, Geneva, Switzerland (2018).
  57. [57]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].
  58. [58]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
  59. [59]
    CMS collaboration, Search for a Standard Model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV, submitted to Phys. Lett. B (2018) [arXiv:1811.08459] [INSPIRE].
  60. [60]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third generation quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-032, CERN, Geneva, Switzerland (2018).
  61. [61]
    The leptonic VLQ candidate mass distributions in the signal region after the maximum likelihood fit in the signal region and control region webpage, https://hepdata.net/record/ins1609451.
  62. [62]
    CMS collaboration, Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 772 (2017) 634 [arXiv:1701.08328] [INSPIRE].
  63. [63]
    R. Dermisek, E. Lunghi and S. Shin, Hunting for heavy Higgses in models with vectorlike quarks, work in progress.Google Scholar
  64. [64]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Probing the Standard Model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, 28 July–5 September 1997, (1998), pg. 281 [hep-ph/9806471] [INSPIRE].
  65. [65]
    A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Radovan Dermíšek
    • 1
  • Enrico Lunghi
    • 1
  • Seodong Shin
    • 2
    • 3
    Email author
  1. 1.Physics DepartmentIndiana UniversityBloomingtonU.S.A.
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.Department of Physics and IPAPYonsei UniversitySeoulKorea

Personalised recommendations