Advertisement

The NMSSM is within reach of the LHC: mass correlations & decay signatures

  • Sebastian BaumEmail author
  • Nausheen R. Shah
  • Katherine Freese
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

The Next-to-Minimal Supersymmetric Standard Model (NMSSM), the singlet extension of the MSSM which fixes many of the MSSM’s shortcomings, is shown to be within reach of the upcoming runs of the Large Hadron Collider (LHC). A systematic treatment of the various Higgs decay channels and their interplay has been lacking due to the seemingly large number of free parameters in the NMSSM’s Higgs sector. We demonstrate that due to the SM-like nature of the observed Higgs boson, the NMSSM’s Higgs and neutralino sectors have highly correlated masses and couplings and can effectively be described by four physically intuitive parameters: the physical masses of the two CP-odd states and their mixing angle, and tan β, which plays a minor role. The heavy Higgs bosons in the NMSSM have large branching ratios into pairs of lighter Higgs bosons or a light Higgs and a Z boson. Search channels arising via these Higgs cascades are unique to models like the NMSSM with a Higgs sector larger than that of the MSSM. In order to cover as much of the NMSSM parameter space as possible, one must combine conventional search strategies employing decays of the additional Higgs bosons into pairs of SM particles with Higgs cascade channels. We demonstrate that such a combination would allow a significant fraction of the viable NMSSM parameter space containing additional Higgs bosons with masses below 1 TeV to be probed at future runs of the LHC.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner and G. Weiglein, MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].
  5. [5]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Bechtle et al., The Light and Heavy Higgs Interpretation of the MSSM, Eur. Phys. J. C 77 (2017) 67 [arXiv:1608.00638] [INSPIRE].
  8. [8]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  9. [9]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].
  11. [11]
    J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. 138B (1984) 150 [INSPIRE].
  12. [12]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].
  13. [13]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-supersymmetry model, Phys. Rev. D 88 (2013) 075003 [arXiv:1208.0833] [INSPIRE].
  15. [15]
    M. Farina, M. Perelstein and B. Shakya, Higgs Couplings and Naturalness in λ-SUSY, JHEP 04 (2014) 108 [arXiv:1310.0459] [INSPIRE].
  16. [16]
    Z. Kang, J. Li, T. Li, D. Liu and J. Shu, Probing the CP-even Higgs sector via H 3H 2 H 1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D 88 (2013) 015006 [arXiv:1301.0453] [INSPIRE].
  17. [17]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery Prospects for NMSSM Higgs Bosons at the High-Energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].
  18. [18]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Alignment limit of the NMSSM Higgs sector, Phys. Rev. D 93 (2016) 035013 [arXiv:1510.09137] [INSPIRE].
  19. [19]
    U. Ellwanger and M. Rodriguez-Vazquez, Discovery Prospects of a Light Scalar in the NMSSM, JHEP 02 (2016) 096 [arXiv:1512.04281] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Baum, K. Freese, N.R. Shah and B. Shakya, NMSSM Higgs boson search strategies at the LHC and the mono-Higgs signature in particular, Phys. Rev. D 95 (2017) 115036 [arXiv:1703.07800] [INSPIRE].
  22. [22]
    U. Ellwanger and M. Rodriguez-Vazquez, Simultaneous search for extra light and heavy Higgs bosons via cascade decays, JHEP 11 (2017) 008 [arXiv:1707.08522] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Heng, X. Gong and H. Zhou, Pair production of Higgs boson in NMSSM at the LHC with the next-to-lightest CP-even Higgs boson being SM-like, Chin. Phys. C 42 (2018) 073103 [arXiv:1805.01598] [INSPIRE].
  24. [24]
    R. Enberg, W. Klemm, S. Moretti and S. Munir, Electroweak production of multiple (pseudo)scalars in the 2HDM, arXiv:1812.01147 [INSPIRE].
  25. [25]
    F. Kling, H. Li, A. Pyarelal, H. Song and S. Su, Exotic Higgs Decays in Type-II 2HDMs at the LHC and Future 100 TeV Hadron Colliders, arXiv:1812.01633 [INSPIRE].
  26. [26]
    M.E. Krauss, T. Opferkuch and F. Staub, The Ultraviolet Landscape of Two-Higgs Doublet Models, Eur. Phys. J. C 78 (2018) 1020 [arXiv:1807.07581] [INSPIRE].
  27. [27]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The Scale-Invariant NMSSM and the 126 GeV Higgs Boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-Mass Higgs Bosons in the NMSSM and Their LHC Implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Cheung, M. Papucci, D. Sanford, N.R. Shah and K.M. Zurek, NMSSM Interpretation of the Galactic Center Excess, Phys. Rev. D 90 (2014) 075011 [arXiv:1406.6372] [INSPIRE].
  30. [30]
    B. Dutta, Y. Gao and B. Shakya, Light Higgsino Decays as a Probe of the NMSSM, Phys. Rev. D 91 (2015) 035016 [arXiv:1412.2774] [INSPIRE].
  31. [31]
    U. Ellwanger, Present Status and Future Tests of the Higgsino-Singlino Sector in the NMSSM, JHEP 02 (2017) 051 [arXiv:1612.06574] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  33. [33]
    J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunters Guide, Frontiers in Physics, Westview Press, (2008).Google Scholar
  34. [34]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].
  36. [36]
  37. [37]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].
  38. [38]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].
  39. [39]
    D. Das, U. Ellwanger and A.M. Teixeira, NMSDECAY: A Fortran Code for Supersymmetric Particle Decays in the Next-to-Minimal Supersymmetric Standard Model, Comput. Phys. Commun. 183 (2012) 774 [arXiv:1106.5633] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Mühlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].
  41. [41]
    S. Baum and N.R. Shah, Two Higgs Doublets and a Complex Singlet: Disentangling the Decay Topologies and Associated Phenomenology, arXiv:1808.02667 [INSPIRE].
  42. [42]
    H. Georgi and D.V. Nanopoulos, Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories, Phys. Lett. 82B (1979) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].
  44. [44]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  45. [45]
    F.J. Botella and J.P. Silva, Jarlskoglike invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  46. [46]
    G.C. Branco, L. Lavoura and S.J.P., CP violation, Oxford University Press, Oxford, U.K., (1999).Google Scholar
  47. [47]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  48. [48]
    CMS collaboration, Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-042 (2016).
  49. [49]
    CMS collaboration, Combined measurements of the Higgs bosons couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031 (2017).
  50. [50]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  51. [51]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay in the HZZ →4ℓ and Hγγ channels using \( \sqrt{s}=13 \) TeV pp collision data collected with the ATLAS experiment, ATLAS-CONF-2017-047 (2017).
  52. [52]
    N. Craig and S. Thomas, Exclusive Signals of an Extended Higgs Sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  54. [54]
    H.E. Haber, The Higgs data and the Decoupling Limit, in Proceedings, 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013): Toyama, Japan, February 13-16, 2013, arXiv:1401.0152 [INSPIRE].
  55. [55]
    D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D 91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].
  56. [56]
    P.S.B. Dev and A. Pilaftsis, Natural Standard Model Alignment in the Two Higgs Doublet Model, J. Phys. Conf. Ser. 631 (2015) 012030 [arXiv:1503.09140] [INSPIRE].
  57. [57]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].
  58. [58]
    M. Carena, N.R. Shah and C.E.M. Wagner, Light Dark Matter and the Electroweak Phase Transition in the NMSSM, Phys. Rev. D 85 (2012) 036003 [arXiv:1110.4378] [INSPIRE].
  59. [59]
    S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM, JHEP 04 (2018) 069 [arXiv:1712.09873] [INSPIRE].
  60. [60]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  61. [61]
    S. Gori, Z. Liu and B. Shakya, Heavy Higgs as a Portal to the Supersymmetric Electroweak Sector, arXiv:1811.11918 [INSPIRE].
  62. [62]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  63. [63]
    R. Barcelo and M. Masip, Extra Higgs bosons in \( t\overline{t} \) production at the LHC, Phys. Rev. D 81 (2010) 075019 [arXiv:1001.5456] [INSPIRE].
  64. [64]
    V. Barger, W.-Y. Keung and B. Yencho, Azimuthal Correlations in Top Pair Decays and The Effects of New Heavy Scalars, Phys. Rev. D 85 (2012) 034016 [arXiv:1112.5173] [INSPIRE].
  65. [65]
    Y. Bai and W.-Y. Keung, Can vanishing mass-on-shell interactions generate a dip at colliders?, Int. J. Mod. Phys. A 30 (2015) 1550120 [arXiv:1407.6355] [INSPIRE].
  66. [66]
    S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].
  67. [67]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the Wedge: Search Strategies for Extended Higgs Sectors with Heavy Flavor Final States, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].
  68. [68]
    M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the \( t\overline{t} \) channel at the LHC, JHEP 11 (2016) 159 [arXiv:1608.07282] [INSPIRE].
  69. [69]
    M. Cepeda, S. Gori, P.J. Ilten, M. Kado and F. Riva,, Higgs Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-04 (2018).
  70. [70]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
  72. [72]
    CMS collaboration, Search for additional neutral Higgs bosons decaying to a pair of tau leptons in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-14-029 (2014).
  73. [73]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for Minimal Supersymmetric Standard Model Higgs Bosons H/A in the τ τ final state in up to 13.3 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, ATLAS-CONF-2016-085 (2016).
  75. [75]
    CMS collaboration, Search for a neutral MSSM Higgs boson decaying into τ τ with 12.9 fb −1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-037 (2016).
  76. [76]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the di-tau final state in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-020 (2017).
  77. [77]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  78. [78]
    CMS collaboration, Search for a narrow heavy decaying to bottom quark pairs in the 13 TeV data sample, CMS-PAS-HIG-16-025 (2016).
  79. [79]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  80. [80]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 80 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-037 (2014).
  81. [81]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) T eV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for resonances in diphoton events with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-018 (2016).
  83. [83]
    CMS collaboration, Search for resonant production of high mass photon pairs using 12.9 fb −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 and 13 TeV, CMS-PAS-EXO-16-027 (2016).
  84. [84]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb −1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
  85. [85]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  86. [86]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  87. [87]
    CMS collaboration, Search for a heavy scalar boson decaying into a pair of Z bosons in the 22ν final state, CMS-PAS-HIG-16-001 (2016).
  88. [88]
    ATLAS collaboration, Search for high-mass resonances decaying into a Z boson pair in the ℓℓνν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-012 (2016).
  89. [89]
    ATLAS collaboration, Search for ZZ resonances in the ℓℓqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-016 (2016).
  90. [90]
    ATLAS collaboration, Search for diboson resonances in the llqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071 (2015).
  91. [91]
    CMS collaboration, Measurements of properties of the Higgs boson and search for an additional resonance in the four-lepton final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-033 (2016).
  92. [92]
    ATLAS collaboration, Search for new phenomena in the Z(→ ℓℓ) + E Tmiss final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-056 (2016).
  93. [93]
    ATLAS collaboration, Study of the Higgs boson properties and search for high-mass scalar resonances in the HZZ → 4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-079 (2016).
  94. [94]
    CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-012 (2017).
  95. [95]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  96. [96]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  97. [97]
    CMS collaboration, Search for the Standard Model Higgs boson in the H to WW to lnujj decay channel in pp collisions at the LHC, CMS-PAS-HIG-13-027 (2013).
  98. [98]
    ATLAS collaboration, Search for a high-mass Higgs boson in the HW Wlνlν decay channel with the ATLAS detector using 21 fb −1 of proton-proton collision data, ATLAS-CONF-2013-067 (2013).
  99. [99]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-021 (2016).
  100. [100]
    CMS collaboration, Search for high mass Higgs to WW with fully leptonic decays using 2015 data, CMS-PAS-HIG-16-023 (2016).
  101. [101]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-074 (2016).
  102. [102]
    ATLAS collaboration, Search for diboson resonance production in the ℓνqq final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-062 (2016).
  103. [103]
    ATLAS collaboration, Search for heavy resonances decaying into W W in the eνμν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for W W/W Z resonance production in ℓνqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 042 [arXiv:1710.07235] [INSPIRE].
  105. [105]
    CMS collaboration, Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with hττ, Phys. Lett. B 755 (2016) 217 [arXiv:1510.01181] [INSPIRE].
  106. [106]
    CMS collaboration, Model independent search for Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state, CMS-PAS-HIG-15-013 (2015).
  107. [107]
    ATLAS collaboration, Searches for Higgs boson pair production in the hhbbτ τ, γγW W , γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].
  108. [108]
    CMS collaboration, Search for resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state, CMS-PAS-HIG-16-013 (2016).
  109. [109]
    CMS collaboration, Search for resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state using 2016 data, CMS-PAS-HIG-16-029 (2016).
  110. [110]
    CMS collaboration, Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 778 (2018) 101 [arXiv:1707.02909] [INSPIRE].
  111. [111]
    CMS collaboration, Search for resonant Higgs boson pair production in the \( b\overline{b} l\nu l\nu \) final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-011 (2016).
  112. [112]
    CMS collaboration, Search for resonant and nonresonant Higgs boson pair production in the \( b\overline{b}\mathit{\ell \nu \ell \nu } \) final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 054 [arXiv:1708.04188] [INSPIRE].
  113. [113]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  114. [114]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeVwith the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  115. [115]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 13 TeV, CMS-PAS-HIG-16-002 (2016).
  116. [116]
    ATLAS collaboration, Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-017 (2016).
  117. [117]
    ATLAS collaboration, Search for pair production of Higgs bosons in the bbbb final state using protonproton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-049 (2016).
  118. [118]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV, CMS-PAS-HIG-17-009 (2017).
  119. [119]
    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].
  120. [120]
    ATLAS collaboration, Search For Higgs Boson Pair Production in the \( \gamma \gamma b\overline{b} \) Final State using pp Collision Data at \( \sqrt{s}=8 \) TeV from the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  121. [121]
    CMS collaboration, Search for \( H\left(b\overline{b}\right)H\left(\gamma \gamma \right) \) decays at 13TeV, CMS-PAS-HIG-16-032 (2016).
  122. [122]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}\gamma \gamma \) final state using pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-004 (2016).
  123. [123]
    CMS collaboration, Search for Higgs boson pair production in the final state containing two photons and two bottom quarks in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-008 (2017).
  124. [124]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  125. [125]
    CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in \( {\ell}^{+}{\ell}^{-}b\overline{b} \) final states, Phys. Lett. B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
  126. [126]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-015 (2016).
  127. [127]
    ATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 11 (2018) 051] [arXiv:1712.06518] [INSPIRE].
  128. [128]
    CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, CERN-EP-2016-292 (2017).
  129. [129]
    CMS collaboration, A Search for Beyond Standard Model Light Bosons Decaying into Muon Pairs, CMS-PAS-HIG-16-035 (2016).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sebastian Baum
    • 1
    • 2
    Email author
  • Nausheen R. Shah
    • 3
  • Katherine Freese
    • 1
    • 2
    • 4
  1. 1.The Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Department of Physics & AstronomyWayne State UniversityDetroitU.S.A.
  4. 4.Leinweber Center for Theoretical Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations