Advertisement

Compactifications of 6d\( \mathcal{N} \) = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes

  • Kantaro Ohmori
  • Yuji TachikawaEmail author
  • Gabi Zafrir
Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

We consider compactifications of very Higgsable 6d\( \mathcal{N} \)=(1, 0) SCFTs on T2 with non-trivial Stiefel-Whitney classes (or equivalently ’t Hooft magnetic fluxes) introduced for their flavor symmetry groups. These systems can also be studied as twisted S1 compactifications of the corresponding 5d theories. We deduce various properties of the resulting 4d \( \mathcal{N} \)=2 SCFTs by combining these two viewpoints. In particular, we find that all 4d rank-1 \( \mathcal{N} \)=2 SCFTs with a dimension-6 Coulomb branch operator with flavor symmetry \( \mathfrak{e} \)8, \( \mathfrak{u}\mathfrak{s}\mathfrak{p} \)(10), \( \mathfrak{s}\mathfrak{u} \)(4) and \( \mathfrak{s}\mathfrak{u} \)(3) can be uniformly obtained by starting from a single-tensor theory in 6d.

We also have a mostly independent appendix where we propose a rule to determine the Coulomb branch dimensions of 4d\( \mathcal{N} \)=2 theories obtained by T2 compactifications of 6d very Higgsable theories with and without Stiefel-Whitney twist.

Keywords

Field Theories in Higher Dimensions Supersymmetric Gauge Theory String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  3. [3]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  4. [4]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.J. Heckman and T. Rudelius, Top Down Approach to 6D SCFTs, J. Phys. A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Gaiotto and S.S. Razamat, \( \mathcal{N} \) = 1 theories of class \( \mathcal{S} \) k, JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].
  7. [7]
    S.S. Razamat, C. Vafa and G. Zafrir, 4d \( \mathcal{N} \) = 1 from 6d (1, 0), JHEP 04 (2017) 064 [arXiv:1610.09178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    I. Bah, A. Hanany, K. Maruyoshi, S.S. Razamat, Y. Tachikawa and G. Zafrir, 4d \( \mathcal{N} \) = 1 from 6d \( \mathcal{N} \) = (1, 0) on a torus with fluxes, JHEP 06 (2017) 022 [arXiv:1702.04740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, E-String Theory on Riemann Surfaces, Fortsch. Phys. 66 (2018) 1700074 [arXiv:1709.02496] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, D-type Conformal Matter and SU/USp Quivers, JHEP 06 (2018) 058 [arXiv:1802.00620] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, Compactifications of ADE conformal matter on a torus, JHEP 09 (2018) 110 [arXiv:1806.07620] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.S. Razamat and G. Zafrir, Compactification of 6d minimal SCFTs on Riemann surfaces, Phys. Rev. D 98 (2018) 066006 [arXiv:1806.09196] [INSPIRE].ADSGoogle Scholar
  13. [13]
    O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the \( \mathcal{N} \) = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on T 2 and class S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].
  16. [16]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on S 1 /T 2 and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Zafrir, Brane webs, 5d gauge theories and 6d \( \mathcal{N} \) = (1, 0) SCFTs, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    K. Ohmori and H. Shimizu, S 1 /T 2 compactifications of 6d \( \mathcal{N} \) = (1, 0) theories and brane webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams, arXiv:1509.03300 [INSPIRE].
  20. [20]
    N. Mekareeya, K. Ohmori, Y. Tachikawa and G. Zafrir, E 8 instantons on type-A ALE spaces and supersymmetric field theories, JHEP 09 (2017) 144 [arXiv:1707.04370] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    N. Mekareeya, K. Ohmori, H. Shimizu and A. Tomasiello, Small instanton transitions for M5 fractions, JHEP 10 (2017) 055 [arXiv:1707.05785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Eguchi and K. Sakai, Seiberg-Witten curve for the E string theory, JHEP 05 (2002) 058 [hep-th/0203025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    T. Eguchi and K. Sakai, Seiberg-Witten curve for E string theory revisited, Adv. Theor. Math. Phys. 7 (2003) 419 [hep-th/0211213] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].
  25. [25]
    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part I: physical constraints on relevant deformations, JHEP 02 (2018) 001 [arXiv:1505.04814] [INSPIRE].
  26. [26]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP 02 (2018) 002 [arXiv:1601.00011] [INSPIRE].
  27. [27]
    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003 [arXiv:1609.04404] [INSPIRE].
  28. [28]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape of \( \mathcal{N} \) = 2 rank 1 SCFTs, JHEP 05 (2016) 088 [arXiv:1602.02764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E N global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    O.J. Ganor, Toroidal compactification of heterotic 6-D noncritical strings down to four-dimensions, Nucl. Phys. B 488 (1997) 223 [hep-th/9608109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    P.C. Argyres and J.R. Wittig, Infinite coupling duals of \( \mathcal{N} \) = 2 gauge theories and new rank 1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Twisted D-Series, JHEP 04 (2015) 173 [arXiv:1309.2299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Z 3 -twisted D 4 Theory, arXiv:1601.02077 [INSPIRE].
  34. [34]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Zafrir, Compactifications of 5d SCFTs with a twist, JHEP 01 (2017) 097 [arXiv:1605.08337] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Hanany and N. Mekareeya, The small E 8 instanton and the Kraft Procesi transition, JHEP 07 (2018) 098 [arXiv:1801.01129] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    O. Chacaltana and J. Distler, Tinkertoys for the D N series, JHEP 02 (2013) 110 [arXiv:1106.5410] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Lemos, W. Peelaers and L. Rastelli, The superconformal index of class S theories of type D, JHEP 05 (2014) 120 [arXiv:1212.1271] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Gaiotto and S.S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A.D. Shapere and Y. Tachikawa, Central charges of \( \mathcal{N} \) = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  47. [47]
    A. Borel, R. Friedman and J.W. Morgan, Almost commuting elements in compact Lie groups, math/9907007 [INSPIRE].
  48. [48]
    S.-S. Kim, M. Taki and F. Yagi, Tao Probing the End of the World, PTEP 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  49. [49]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs, arXiv:1902.04754 [INSPIRE].
  52. [52]
    Y. Tachikawa and S. Terashima, Seiberg-Witten Geometries Revisited, JHEP 09 (2011) 010 [arXiv:1108.2315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Reid, Young persons guide to canonical singularities, Proc. Symp. Pure Math. 46 (1985) 345.MathSciNetGoogle Scholar
  55. [55]
    E. Witten, Newgaugetheories in six-dimensions, JHEP 01 (1998) 001 [hep-th/9710065] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    O. Chacaltana, J. Distler and Y. Tachikawa, Gaiotto duality for the twisted A 2N − 1 series, JHEP 05 (2015) 075 [arXiv:1212.3952] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    O. Chacaltana, J. Distler and A. Trimm, A Family of 4D \( \mathcal{N} \) = 2 Interacting SCFTs from the Twisted A 2N Series, arXiv:1412.8129 [INSPIRE].
  59. [59]
    O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Twisted E 6 Theory, arXiv:1501.00357 [INSPIRE].
  60. [60]
    Y. Tachikawa, Y. Wang and G. Zafrir, Comments on the twisted punctures of A even class S theory, JHEP 06 (2018) 163 [arXiv:1804.09143] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    V.G. Kac and A.V. Smilga, Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, hep-th/9902029 [INSPIRE].
  62. [62]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG Flows and Nilpotent Hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    P.C. Argyres and M. Martone, Scaling dimensions of Coulomb branch operators of 4d \( \mathcal{N} \) = 2 superconformal field theories, arXiv:1801.06554 [INSPIRE].
  66. [66]
    M. Caorsi and S. Cecotti, Geometric classification of 4d \( \mathcal{N} \) = 2 SCFTs, JHEP 07 (2018) 138 [arXiv:1801.04542] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    O. Chacaltana, J. Distler, A. Trimm and Y. Zhu, Tinkertoys for the E 8 Theory, arXiv:1802.09626 [INSPIRE].
  68. [68]
    O. Chacaltana, J. Distler, A. Trimm and Y. Zhu, Tinkertoys for the E 7 theory, JHEP 05 (2018) 031 [arXiv:1704.07890] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the E 6 theory, JHEP 09 (2015) 007 [arXiv:1403.4604] [INSPIRE].CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan

Personalised recommendations