Advertisement

Thermodynamically stable asymptotically flat hairy black holes with a dilaton potential

  • Dumitru AstefaneseiEmail author
  • David Choque
  • Francisco Gómez
  • Raúl Rojas
Open Access
Regular Article - Theoretical Physics
  • 59 Downloads

Abstract

We present a detailed analysis of the thermodynamics of exact asymptotically flat hairy black holes in Einstein-Maxwell-dilaton theory. We compute the regularized action, quasilocal stress tensor, and conserved charges by using a ‘counterterm method’ similar to the one extensively used in the AdS-CFT duality. In the presence of a non-trivial dilaton potential that vanishes at the boundary we prove that, for some range of parameters, there exist thermodynamically stable black holes in the grand canonical and canonical ensembles. To the best of our knowledge, this is the first example of a thermodynamically stable asymptotically flat black hole, without imposing artificial conditions corresponding to embedding in a finite box.

Keywords

Black Holes in String Theory Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
  2. [2]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  3. [3]
    S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].
  4. [4]
    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  5. [5]
    L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Bigatti and L. Susskind, TASI lectures on the holographic principle, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity, Boulder, Colorado, U.S.A., 31 May-25 June 1999, World Scientific (1999), pp. 883-933 [hep-th/0002044] [INSPIRE].
  7. [7]
    A. Anabalón, D. Astefanesei and R.B. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP 10 (2013) 184 [arXiv:1308.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U. Nucamendi and M. Salgado, Scalar hairy black holes and solitons in asymptotically flat space-times, Phys. Rev. D 68 (2003) 044026 [gr-qc/0301062] [INSPIRE].
  9. [9]
    C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav. 32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].
  12. [12]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
  13. [13]
    J. Tarrío and O. Varela, Electric/magnetic duality and RG flows in AdS 4 /CFT 3, JHEP 01 (2014) 071 [Addendum JHEP 12 (2015) 068] [arXiv:1311.2933] [INSPIRE].
  14. [14]
    A. Anabalón and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, Phys. Lett. B 732 (2014) 137 [arXiv:1311.7459] [INSPIRE].
  15. [15]
    M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].
  16. [16]
    F. Faedo, D. Klemm and M. Nozawa, Hairy black holes in N = 2 gauged supergravity, JHEP 11 (2015) 045 [arXiv:1505.02986] [INSPIRE].
  17. [17]
    A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, Hairy Black Holes and Duality in an Extended Supergravity Model, JHEP 04 (2018) 058 [arXiv:1712.06971] [INSPIRE].
  18. [18]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].
  19. [19]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].
  21. [21]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Arnowitt, S. Deser and C.W. Misner, Energy and the Criteria for Radiation in General Relativity, Phys. Rev. 118 (1960) 1100 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R.L. Arnowitt, S. Deser and C.W. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961) 997 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  27. [27]
    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  28. [28]
    D. Astefanesei and E. Radu, Quasilocal formalism and black ring thermodynamics, Phys. Rev. D 73 (2006) 044014 [hep-th/0509144] [INSPIRE].
  29. [29]
    R. Emparan, Rotating circular strings and infinite nonuniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R.B. Mann, D. Marolf and A. Virmani, Covariant Counterterms and Conserved Charges in Asymptotically Flat Spacetimes, Class. Quant. Grav. 23 (2006) 6357 [gr-qc/0607041] [INSPIRE].
  32. [32]
    D. Astefanesei, R.B. Mann and C. Stelea, Note on counterterms in asymptotically flat spacetimes, Phys. Rev. D 75 (2007) 024007 [hep-th/0608037] [INSPIRE].
  33. [33]
    C. Herdeiro, E. Radu and C. Rebelo, Thermodynamical description of stationary, asymptotically flat solutions with conical singularities, Phys. Rev. D 81 (2010) 104031 [arXiv:1004.3959] [INSPIRE].
  34. [34]
    D. Astefanesei, R.B. Mann, M.J. Rodriguez and C. Stelea, Quasilocal formalism and thermodynamics of asymptotically flat black objects, Class. Quant. Grav. 27 (2010) 165004 [arXiv:0909.3852] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Compere, F. Dehouck and A. Virmani, On Asymptotic Flatness and Lorentz Charges, Class. Quant. Grav. 28 (2011) 145007 [arXiv:1103.4078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Compere and F. Dehouck, Relaxing the Parity Conditions of Asymptotically Flat Gravity, Class. Quant. Grav. 28 (2011) 245016 [Erratum ibid. 30 (2013) 039501] [arXiv:1106.4045] [INSPIRE].
  37. [37]
    D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the first law of black hole thermodynamics, Phys. Lett. B 782 (2018) 47 [arXiv:1803.11317] [INSPIRE].
  38. [38]
    A. Anabalón, Exact Black Holes and Universality in the Backreaction of non-linear σ-models with a potential in (A)dS 4, JHEP 06 (2012) 127 [arXiv:1204.2720] [INSPIRE].
  39. [39]
    A. Aceña, A. Anabalón and D. Astefanesei, Exact hairy black brane solutions in AdS 5 and holographic RG flows, Phys. Rev. D 87 (2013) 124033 [arXiv:1211.6126] [INSPIRE].
  40. [40]
    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS 4 black holes, Phys. Lett. B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].
  41. [41]
    A. Aceña, A. Anabalón, D. Astefanesei and R.B. Mann, Hairy planar black holes in higher dimensions, JHEP 01 (2014) 153 [arXiv:1311.6065] [INSPIRE].
  42. [42]
    A. Anabalón, T. Andrade, D. Astefanesei and R.B. Mann, Universal Formula for the Holographic Speed of Sound, Phys. Lett. B 781 (2018) 547 [arXiv:1702.00017] [INSPIRE].
  43. [43]
    A. Anabalón, D. Astefanesei and C. Martinez, Mass of asymptotically anti-de Sitter hairy spacetimes, Phys. Rev. D 91 (2015) 041501 [arXiv:1407.3296] [INSPIRE].
  44. [44]
    A. Anabalón, D. Astefanesei and J. Oliva, Hairy Black Hole Stability in AdS, Quantum Mechanics on the Half-Line and Holography, JHEP 10 (2015) 068 [arXiv:1507.05520] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Anabalón, D. Astefanesei, D. Choque and C. Martinez, Trace Anomaly and Counterterms in Designer Gravity, JHEP 03 (2016) 117 [arXiv:1511.08759] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S.R. Lau, Light cone reference for total gravitational energy, Phys. Rev. D 60 (1999) 104034 [gr-qc/9903038] [INSPIRE].
  47. [47]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].
  48. [48]
    P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].
  49. [49]
    S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [INSPIRE].
  50. [50]
    D. Astefanesei, M.J. Rodriguez and S. Theisen, Quasilocal equilibrium condition for black ring, JHEP 12 (2009) 040 [arXiv:0909.0008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    L.D. Landau and E.M. Lifshitz, Landau and Lifshitz Course of Theoretical Physics. Volume 5: Statistical Physics, third edition, Butterworth Heinemann, Oxford U.K. (1991).Google Scholar
  52. [52]
    H.B. Callen, Thermodynamics and introduction to thermostatics, John Wiley and Sons (1985).Google Scholar
  53. [53]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].
  54. [54]
    J.W. York Jr., Black hole thermodynamics and the Euclidean Einstein action, Phys. Rev. D 33 (1986) 2092 [INSPIRE].
  55. [55]
    R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes, Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [INSPIRE].
  56. [56]
    O.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall and J.E. Santos, An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    D. Astefanesei, M.J. Rodriguez and S. Theisen, Thermodynamic instability of doubly spinning black objects, JHEP 08 (2010) 046 [arXiv:1003.2421] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    E.W. Hirschmann, L. Lehner, S.L. Liebling and C. Palenzuela, Black Hole Dynamics in Einstein-Maxwell-Dilaton Theory, Phys. Rev. D 97 (2018) 064032 [arXiv:1706.09875] [INSPIRE].
  60. [60]
    P. Jai-akson, A. Chatrabhuti, O. Evnin and L. Lehner, Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity, Phys. Rev. D 96 (2017) 044031 [arXiv:1706.06519] [INSPIRE].
  61. [61]
    M. Cárdenas, F.-L. Julié and N. Deruelle, Thermodynamics sheds light on black hole dynamics, Phys. Rev. D 97 (2018) 124021 [arXiv:1712.02672] [INSPIRE].
  62. [62]
    F. Mccarthy, D. Kubizňák and R.B. Mann, Dilatonic Imprints on Exact Gravitational Wave Signatures, Phys. Rev. D 97 (2018) 104025 [arXiv:1803.01862] [INSPIRE].
  63. [63]
    Y. Brihaye, T. Delplace, C. Herdeiro and E. Radu, An analytic effective model for hairy black holes, Phys. Lett. B 782 (2018) 124 [arXiv:1803.09089] [INSPIRE].
  64. [64]
    A. Bzowski, A. Gnecchi and T. Hertog, Interactions resolve state-dependence in a toy-model of AdS black holes, JHEP 06 (2018) 167 [arXiv:1802.02580] [INSPIRE].
  65. [65]
    R.C. Myers and J.Z. Simon, Black Hole Thermodynamics in Lovelock Gravity, Phys. Rev. D 38 (1988) 2434 [INSPIRE].
  66. [66]
    P. Bueno and P.A. Cano, Four-dimensional black holes in Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 124051 [arXiv:1610.08019] [INSPIRE].
  67. [67]
    P. Bueno and P.A. Cano, Universal black hole stability in four dimensions, Phys. Rev. D 96 (2017) 024034 [arXiv:1704.02967] [INSPIRE].
  68. [68]
    G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].
  69. [69]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].
  70. [70]
    R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].
  71. [71]
    D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    K. Hajian and M.M. Sheikh-Jabbari, Redundant and Physical Black Hole Parameters: Is there an independent physical dilaton charge?, Phys. Lett. B 768 (2017) 228 [arXiv:1612.09279] [INSPIRE].
  73. [73]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].
  74. [74]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].
  75. [75]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].
  76. [76]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].
  77. [77]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
  78. [78]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].
  80. [80]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
  81. [81]
    D.J. Gross, M.J. Perry and L.G. Yaffe, Instability of Flat Space at Finite Temperature, Phys. Rev. D 25 (1982) 330 [INSPIRE].
  82. [82]
    T. Prestidge, Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter, Phys. Rev. D 61 (2000) 084002 [hep-th/9907163] [INSPIRE].
  83. [83]
    J.P. Gregory and S.F. Ross, Stability and the negative mode for Schwarzschild in a finite cavity, Phys. Rev. D 64 (2001) 124006 [hep-th/0106220] [INSPIRE].
  84. [84]
    T. Hertog and K. Maeda, Stability and thermodynamics of AdS black holes with scalar hair, Phys. Rev. D 71 (2005) 024001 [hep-th/0409314] [INSPIRE].
  85. [85]
    S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, Clay Math. Proc. 1 (2002) 221 [hep-th/0009126] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  86. [86]
    S.S. Gubser and I. Mitra, The Evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev. D 64 (2001) 044005 [hep-th/0104071] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Dumitru Astefanesei
    • 1
    Email author
  • David Choque
    • 2
    • 3
  • Francisco Gómez
    • 1
  • Raúl Rojas
    • 1
  1. 1.Pontificia Universidad Católica de ValparaísoInstituto de FísicaValparaísoChile
  2. 2.Universidad Adolfo Ibáñez, Departamento de Ciencias, Facultad de Artes LiberalesViña del MarChile
  3. 3.Universidad Nacional de San António Abad del CuscoCuscoPeru

Personalised recommendations