Advertisement

Improved bounds on ℤ3 singlet dark matter

  • A. Hektor
  • A. Hryczuk
  • K. KannikeEmail author
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We reconsider complex scalar singlet dark matter stabilised by a ℤ3 symmetry. We refine the stability bounds on the potential and use constraints from unitarity on scattering at finite energy to place a stronger lower limit on the direct detection cross section. In addition, we improve the treatment of the thermal freeze-out by including the evolution of the dark matter temperature and its feedback onto relic abundance. In the regions where the freeze-out is dominated by resonant or semi-annihilation, the dark matter decouples kinetically from the plasma very early, around the onset of the chemical decoupling. This results in a modification of the required coupling to the Higgs, which turns out to be at most few per cent in the semi-annihilation region, thus giving credence to the standard approach to the relic density calculation in this regime. In contrast, for dark matter mass just below the Higgs resonance, the modification of the Higgs invisible width and direct and indirect detection signals can be up to a factor 6.7. The model is then currently allowed at 56.8 GeV to 58.4 GeV (depending on the details of early kinetic decoupling) ≲ MS ≲ 62.8 GeV and at MS ≳ 122 GeV if the freeze-out is dominated by semi-annihilation. We show that the whole large semi-annihilation region will be probed by the near-future measurements at the XENONnT experiment.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].
  4. [4]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  5. [5]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  6. [6]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal Standard Model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].
  7. [7]
    S.W. Ham, Y.S. Jeong and S.K. Oh, Electroweak phase transition in an extension of the Standard Model with a real Higgs singlet, J. Phys. G 31 (2005) 857 [hep-ph/0411352] [INSPIRE].
  8. [8]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the Standard Model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].
  9. [9]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  10. [10]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended Standard Model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].
  12. [12]
    X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [INSPIRE].
  13. [13]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].
  14. [14]
    C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].
  15. [15]
    R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].
  16. [16]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for constrained dark matter singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].
  17. [17]
    A. Goudelis, Y. Mambrini and C. Yaguna, Antimatter signals of singlet scalar dark matter, JCAP 12 (2009) 008 [arXiv:0909.2799] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Profumo, L. Ubaldi and C. Wainwright, Singlet scalar dark matter: monochromatic gamma rays and metastable vacua, Phys. Rev. D 82 (2010) 123514 [arXiv:1009.5377] [INSPIRE].
  19. [19]
    W.-L. Guo and Y.-L. Wu, The real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    V. Barger, Y. Gao, M. McCaskey and G. Shaughnessy, Light Higgs boson, light dark matter and gamma rays, Phys. Rev. D 82 (2010) 095011 [arXiv:1008.1796] [INSPIRE].
  21. [21]
    C. Arina and M.H.G. Tytgat, Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission, JCAP 01 (2011) 011 [arXiv:1007.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Bandyopadhyay, S. Chakraborty, A. Ghosal and D. Majumdar, Constraining scalar singlet dark matter with CDMS, XENON and DAMA and prediction for direct detection rates, JHEP 11 (2010) 065 [arXiv:1003.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Drozd, B. Grzadkowski and J. Wudka, Multi-scalar-singlet extension of the Standard Modelthe case for dark matter and an invisible Higgs boson, JHEP 04 (2012) 006 [Erratum ibid. 11 (2014) 130] [arXiv:1112.2582] [INSPIRE].
  24. [24]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
  25. [25]
    I. Low, P. Schwaller, G. Shaughnessy and C.E.M. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].
  26. [26]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].
  27. [27]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the Standard Model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].
  28. [28]
    Y. Mambrini, M.H.G. Tytgat, G. Zaharijas and B. Zaldivar, Complementarity of galactic radio and collider data in constraining WIMP dark matter models, JCAP 11 (2012) 038 [arXiv:1206.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].
  30. [30]
    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
  32. [32]
    A. Urbano and W. Xue, Constraining the Higgs portal with antiprotons, JHEP 03 (2015) 133 [arXiv:1412.3798] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Endo and Y. Takaesu, Heavy WIMP through Higgs portal at the LHC, Phys. Lett. B 743 (2015) 228 [arXiv:1407.6882] [INSPIRE].
  34. [34]
    L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-ray excess and the minimal dark matter model, JHEP 06 (2016) 008 [arXiv:1510.07562] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar singlet dark matter and gamma lines, Phys. Lett. B 751 (2015) 119 [arXiv:1508.04418] [INSPIRE].
  37. [37]
    A. Beniwal et al., Combined analysis of effective Higgs portal dark matter models, Phys. Rev. D 93 (2016) 115016 [arXiv:1512.06458] [INSPIRE].
  38. [38]
    A. Cuoco, B. Eiteneuer, J. Heisig and M. Krämer, A global fit of the γ-ray galactic center excess within the scalar singlet Higgs portal model, JCAP 06 (2016) 050 [arXiv:1603.08228] [INSPIRE].
  39. [39]
    M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (finally!) ruling out Z and Higgs mediated dark matter models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].
  40. [40]
    H. Han, J.M. Yang, Y. Zhang and S. Zheng, Collider signatures of Higgs-portal scalar dark matter, Phys. Lett. B 756 (2016) 109 [arXiv:1601.06232] [INSPIRE].
  41. [41]
    X.-G. He and J. Tandean, New LUX and PandaX-II results illuminating the simplest Higgs-portal dark matter models, JHEP 12 (2016) 074 [arXiv:1609.03551] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Ko and H. Yokoya, Search for Higgs portal DM at the ILC, JHEP 08 (2016) 109 [arXiv:1603.04737] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  44. [44]
    K. Ghorbani and P.H. Ghorbani, Strongly first-order phase transition in real singlet scalar dark matter model, arXiv:1804.05798 [INSPIRE].
  45. [45]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  46. [46]
    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  47. [47]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  48. [48]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].
  50. [50]
    C. Arina, T. Hambye, A. Ibarra and C. Weniger, Intense gamma-ray lines from hidden vector dark matter decay, JCAP 03 (2010) 024 [arXiv:0912.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. D’Eramo and J. Thaler, Semi-annihilation of dark matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    E. Ma, Z 3 dark matter and two-loop neutrino mass, Phys. Lett. B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].
  53. [53]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Z 3 scalar singlet dark matter, JCAP 01 (2013) 022 [arXiv:1211.1014] [INSPIRE].
  54. [54]
    A. Adulpravitchai, B. Batell and J. Pradler, Non-Abelian discrete dark matter, Phys. Lett. B 700 (2011) 207 [arXiv:1103.3053] [INSPIRE].
  55. [55]
    G. Arcadi, F.S. Queiroz and C. Siqueira, The semi-Hooperon: gamma-ray and anti-proton excesses in the galactic center, Phys. Lett. B 775 (2017) 196 [arXiv:1706.02336] [INSPIRE].
  56. [56]
    Y. Cai and A. Spray, Low-temperature enhancement of semi-annihilation and the AMS-02 positron anomaly, JHEP 10 (2018) 075 [arXiv:1807.00832] [INSPIRE].
  57. [57]
    M. Aoki and T. Toma, Impact of semi-annihilation of Z 3 symmetric dark matter with radiative neutrino masses, JCAP 09 (2014) 016 [arXiv:1405.5870] [INSPIRE].
  58. [58]
    C. Bonilla, E. Ma, E. Peinado and J.W.F. Valle, Two-loop Dirac neutrino mass and WIMP dark matter, Phys. Lett. B 762 (2016) 214 [arXiv:1607.03931] [INSPIRE].
  59. [59]
    R. Ding, Z.-L. Han, Y. Liao and W.-P. Xie, Radiative neutrino mass with Z 3 dark matter: from relic density to LHC signatures, JHEP 05 (2016) 030 [arXiv:1601.06355] [INSPIRE].
  60. [60]
    S. Bhattacharya, P. Ghosh, T.N. Maity and T.S. Ray, Mitigating direct detection bounds in non-minimal Higgs portal scalar dark matter models, JHEP 10 (2017) 088 [arXiv:1706.04699] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].
  62. [62]
    S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP 12 (2016) 099 [arXiv:1610.04748] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P. Ko and Y. Tang, Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z 3 symmetry as an example, JCAP 01 (2015) 023 [arXiv:1407.5492] [INSPIRE].
  64. [64]
    P. Ko and Y. Tang, Self-interacting scalar dark matter with local Z 3 symmetry, JCAP 05 (2014) 047 [arXiv:1402.6449] [INSPIRE].
  65. [65]
    J. Guo, Z. Kang, P. Ko and Y. Orikasa, Accidental dark matter: case in the scale invariant local B-L model, Phys. Rev. D 91 (2015) 115017 [arXiv:1502.00508] [INSPIRE].
  66. [66]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a global group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].
  68. [68]
    M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].
  69. [69]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenologyan example of Z N symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].
  70. [70]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Minimal semi-annihilating Z N scalar dark matter, JCAP 06 (2014) 021 [arXiv:1403.4960] [INSPIRE].
  71. [71]
    C. Bonilla, D. Sokolowska, N. Darvishi, J.L. Diaz-Cruz and M. Krawczyk, IDMS: inert dark matter model with a complex singlet, J. Phys. G 43 (2016) 065001 [arXiv:1412.8730] [INSPIRE].
  72. [72]
    I.P. Ivanov and V. Keus, Z p scalar dark matter from multi-Higgs-doublet models, Phys. Rev. D 86 (2012) 016004 [arXiv:1203.3426] [INSPIRE].
  73. [73]
    A. Karam and K. Tamvakis, Dark matter from a classically scale-invariant SU(3)X , Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].
  74. [74]
    A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].
  75. [75]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
  76. [76]
    T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].
  77. [77]
    M. Duch and B. Grzadkowski, Resonance enhancement of dark matter interactions: the case for early kinetic decoupling and velocity dependent resonance width, JHEP 09 (2017) 159 [arXiv:1705.10777] [INSPIRE].
  78. [78]
    M.D. Goodsell and F. Staub, Unitarity constraints on general scalar couplings with SARAH, Eur. Phys. J. C 78 (2018) 649 [arXiv:1805.07306] [INSPIRE].
  79. [79]
    P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of Z2 and Z3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].
  80. [80]
    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].
  81. [81]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  83. [83]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
  84. [84]
    A. Masoumi, K.D. Olum and B. Shlaer, Efficient numerical solution to vacuum decay with many fields, JCAP 01 (2017) 051 [arXiv:1610.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    Z. Kang, P. Ko and T. Matsui, Strong first order EWPT & strong gravitational waves in Z 3 -symmetric singlet scalar extension, JHEP 02 (2018) 115 [arXiv:1706.09721] [INSPIRE].
  86. [86]
    G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
  87. [87]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  88. [88]
    A. Schuessler and D. Zeppenfeld, Unitarity constraints on MSSM trilinear couplings, in SUSY 2007 Proceedings, 15th International Conference on Supersymmetry and Unification of Fundamental Interactions, 26 July-1 August 2007, Karlsruhe, Germany (2007), pg. 236 [arXiv:0710.5175] [INSPIRE].
  89. [89]
    M. Bobrowski, G. Chalons, W.G. Hollik and U. Nierste, Vacuum stability of the effective Higgs potential in the minimal supersymmetric Standard Model, Phys. Rev. D 90 (2014) 035025 [Erratum ibid. D 92 (2015) 059901] [arXiv:1407.2814] [INSPIRE].
  90. [90]
    F.C. Adams, General solutions for tunneling of scalar fields with quartic potentials, Phys. Rev. D 48 (1993) 2800 [hep-ph/9302321] [INSPIRE].
  91. [91]
    V. Branchina, F. Contino and P.M. Ferreira, Electroweak vacuum lifetime in two Higgs doublet models, JHEP 11 (2018) 107 [arXiv:1807.10802] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod and F. Staub, Constraining the natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Phys. Lett. B 737 (2014) 156 [arXiv:1405.7376] [INSPIRE].
  93. [93]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  94. [94]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7,8 \) and 13TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  95. [95]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031, CERN, Geneva, Switzerland (2018).
  96. [96]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].
  98. [98]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  99. [99]
    L.G. van den Aarssen, T. Bringmann and Y.C. Goedecke, Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates, Phys. Rev. D 85 (2012) 123512 [arXiv:1202.5456] [INSPIRE].
  100. [100]
    T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida, Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term, JCAP 11 (2016) 043 [arXiv:1602.07624] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A. Kamada, H.J. Kim and H. Kim, Self-heating of strongly interacting massive particles, Phys. Rev. D 98 (2018) 023509 [arXiv:1805.05648] [INSPIRE].
  102. [102]
    XENON collaboration, The XENONnT dark matter experiment, in DPF 2017, Fermilab, Batavia, IL, U.S.A., July 2017.Google Scholar
  103. [103]
    MAGIC and Fermi-LAT collaborations, Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  104. [104]
    D.A. Green, A colour scheme for the display of astronomical intensity images, Bull. Astron. Soc. India 39 (2011) 289 [arXiv:1108.5083] [INSPIRE].ADSGoogle Scholar
  105. [105]
    FERMI collaboration webpage, https://fermi.gsfc.nasa.gov/.
  106. [106]
    MAGIC collaboration webpage, http://magic.mpp.mpg.de/.
  107. [107]
    Fermi-LAT collaboration, Sensitivity projections for dark matter searches with the Fermi Large Area Telescope, Phys. Rept. 636 (2016) 1 [arXiv:1605.02016] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Department of PhysicsUniversity of OsloOsloNorway
  3. 3.National Centre for Nuclear ResearchWarsawPoland

Personalised recommendations