Advertisement

Revisiting constraints on 3 + 1 active-sterile neutrino mixing using IceCube data

  • Luis Salvador MirandaEmail author
  • Soebur Razzaque
Open Access
Regular Article - Theoretical Physics
  • 54 Downloads

Abstract

Recent IceCube search results for sterile neutrino increased tension between the combined appearance and disappearance experiments. On the other hand, MiniBooNE latest data confirms at 4.9σ CL the short-baseline oscillation anomaly. We analyze published IceCube data based on two different active-sterile mixing schemes using one additional sterile neutrino flavor. We present exclusion regions in the parameter ranges 0.01 ≤ sin2θ24 ≤ 0.1 and 0.1 eV2 ≤ Δm 42 2 ≤ 10 eV2 for the mass-mixing and flavor-mixing schemes. Under the more conservative mass-mixing scheme, 3σ CL allowed regions for the appearance experiment and MiniBooNE latest result are excluded at ≳ 3σ CL. In case of less-restrictive flavor-mixing scheme, results from the appearance experiments are excluded at ≳ 2σ CL. We also find that including prompt component of the atmospheric neutrino flux relaxes constraints on sterile mixing for Δm 42 2 ≳ 1 eV2.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  2. [2]
    MiniBooNE collaboration, Event Excess in the MiniBooNE Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].
  3. [3]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.N. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an 37 Ar source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].
  6. [6]
    P. Ballett, S. Pascoli and M. Ross-Lonergan, U(1)′ mediated decays of heavy sterile neutrinos in MiniBooNE, arXiv:1808.02915 [INSPIRE].
  7. [7]
    E. Bertuzzo, S. Jana, P.A.N. Machado and R. Zukanovich Funchal, Dark Neutrino Portal to Explain MiniBooNE excess, Phys. Rev. Lett. 121 (2018) 241801 [arXiv:1807.09877] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, The reactor antineutrino anomaly and low energy threshold neutrino experiments, Phys. Lett. B 776 (2018) 451 [arXiv:1708.09518] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Giunti, X.P. Ji, M. Laveder, Y.F. Li and B.R. Littlejohn, Reactor Fuel Fraction Information on the Antineutrino Anomaly, JHEP 10 (2017) 143 [arXiv:1708.01133] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K.S. Babu, D.W. McKay, I. Mocioiu and S. Pakvasa, Light sterile neutrinos, lepton number violating interactions and the LSND neutrino anomaly, Phys. Rev. D 93 (2016) 113019 [arXiv:1605.03625] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Rajpoot, S. Sahu and H.C. Wang, Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Eur. Phys. J. C 74 (2014) 2936 [arXiv:1310.7075] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.S. Kim, G. López Castro and D. Sahoo, Constraints on a sub-eV scale sterile neutrino from nonoscillation measurements, Phys. Rev. D 98 (2018) 115021 [arXiv:1809.02265] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Das, P.S.B. Dev and C.S. Kim, Constraining Sterile Neutrinos from Precision Higgs Data, Phys. Rev. D 95 (2017) 115013 [arXiv:1704.00880] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Feng, J.-F. Zhang and X. Zhang, A search for sterile neutrinos with the latest cosmological observations, Eur. Phys. J. C 77 (2017) 418 [arXiv:1703.04884] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Giusarma et al., Constraints on massive sterile neutrino species from current and future cosmological data, Phys. Rev. D 83 (2011) 115023 [arXiv:1102.4774] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Steigman, Primordial Helium And the Cosmic Background Radiation, JCAP 04 (2010) 029 [arXiv:1002.3604] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Forastieri, M. Lattanzi, G. Mangano, A. Mirizzi, P. Natoli and N. Saviano, Cosmic microwave background constraints on secret interactions among sterile neutrinos, JCAP 07 (2017) 038 [arXiv:1704.00626] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y.I. Izotov and T.X. Thuan, The primordial abundance of 4 He: evidence for non-standard big bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    B. Chauhan and S. Mohanty, Signature of light sterile neutrinos at IceCube, Phys. Rev. D 98 (2018) 083021 [arXiv:1808.04774] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Song, M.C. Gonzalez-Garcia and J. Salvado, Cosmological constraints with self-interacting sterile neutrinos, JCAP 10 (2018) 055 [arXiv:1805.08218] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.M. Berryman, V. Brdar and P. Huber, Nuclear and Particle Conspiracy Solves Both Reactor Antineutrino Anomalies, arXiv:1803.08506 [INSPIRE].
  23. [23]
    F. Bezrukov, A. Chudaykin and D. Gorbunov, Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology, JCAP 06 (2017) 051 [arXiv:1705.02184] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Archidiacono et al., Pseudoscalar-sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 08 (2016) 067 [arXiv:1606.07673] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    NEOS collaboration, Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017) 121802 [arXiv:1610.05134] [INSPIRE].
  26. [26]
    Daya Bay and MINOS collaborations, Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay and Bugey-3 Experiments, Phys. Rev. Lett. 117 (2016) 151801 [Erratum ibid. 117 (2016) 209901] [arXiv:1607.01177] [INSPIRE].
  27. [27]
    MINOS collaboration, Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  28. [28]
    MINOS+ collaboration, Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, Phys. Rev. Lett. 122 (2019) 091803 [arXiv:1710.06488] [INSPIRE].
  29. [29]
    OPERA collaboration, Final results of the search for ν μν e oscillations with the OPERA detector in the CNGS beam, JHEP 06 (2018) 151 [arXiv:1803.11400] [INSPIRE].
  30. [30]
    IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
  31. [31]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Model-independent \( {\overline{\nu}}_e \) short-baseline oscillations from reactor spectral ratios, Phys. Lett. B 782 (2018) 13 [arXiv:1801.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Barinov, B. Cleveland, V. Gavrin, D. Gorbunov and T. Ibragimova, Revised neutrino-gallium cross section and prospects of BEST in resolving the Gallium anomaly, Phys. Rev. D 97 (2018) 073001 [arXiv:1710.06326] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Dentler, Á. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties?Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Thakore, M.M. Devi, S. Kumar Agarwalla and A. Dighe, Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range, JHEP 08 (2018) 022 [arXiv:1804.09613] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Signatures of a Light Sterile Neutrino in T2HK, JHEP 04 (2018) 091 [arXiv:1801.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Capozzi, C. Giunti, M. Laveder and A. Palazzo, Joint short- and long-baseline constraints on light sterile neutrinos, Phys. Rev. D 95 (2017) 033006 [arXiv:1612.07764] [INSPIRE].ADSGoogle Scholar
  37. [37]
    IceCube collaboration, Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
  38. [38]
    Z. Moss, M.H. Moulai, C.A. Argüelles and J.M. Conrad, Exploring a nonminimal sterile neutrino model involving decay at IceCube, Phys. Rev. D 97 (2018) 055017 [arXiv:1711.05921] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.T. Petcov, On the IceCube Result on \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_s \) oscillations, Int. J. Mod. Phys. A 32 (2017) 1750018 [arXiv:1611.09247] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    V. Brdar, J. Kopp and X.-P. Wang, Sterile Neutrinos and Flavor Ratios in IceCube, JCAP 01 (2017) 026 [arXiv:1611.04598] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Liao and D. Marfatia, Impact of nonstandard interactions on sterile neutrino searches at IceCube, Phys. Rev. Lett. 117 (2016) 071802 [arXiv:1602.08766] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Esmaili and H. Nunokawa, On the robustness of IceCubes bound on sterile neutrinos in the presence of non-standard interactions, Eur. Phys. J. C 79 (2019) 70 [arXiv:1810.11940] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino, Phys. Rev. Lett. 117 (2016) 221801 [arXiv:1607.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
  45. [45]
    H. Nunokawa, O.L.G. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].
  46. [46]
    S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Esmaili, F. Halzen and O.L.G. Peres, Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, JCAP 11 (2012) 041 [arXiv:1206.6903] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Esmaili and A.Y. Smirnov, Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, JHEP 12 (2013) 014 [arXiv:1307.6824] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Lindner, W. Rodejohann and X.-J. Xu, Sterile neutrinos in the light of IceCube, JHEP 01 (2016) 124 [arXiv:1510.00666] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [INSPIRE].ADSGoogle Scholar
  52. [52]
    NOvA collaboration, New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  53. [53]
    T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν e interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. D 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
  54. [54]
    IceCube collaboration, Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].
  55. [55]
    A.M. Dziewinski and D.L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].ADSGoogle Scholar
  57. [57]
    G.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins and T. Stanev, Three-dimensional calculation of atmospheric neutrinos, Phys. Rev. D 70 (2004) 023006 [astro-ph/0403630] [INSPIRE].
  58. [58]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].
  59. [59]
    T.K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production and the atmospheric muon charge ratio, Astropart. Phys. 35 (2012) 801 [arXiv:1111.6675] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    IceCube collaboration, Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration, Phys. Rev. D 89 (2014) 062007 [arXiv:1311.7048] [INSPIRE].
  61. [61]
    IceCube collaboration, Measurement of the ν μ energy spectrum with IceCube-79, Eur. Phys. J. C 77 (2017) 692 [arXiv:1705.07780] [INSPIRE].
  62. [62]
    M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centre for Astro-Particle Physics (CAPP) and Department of PhysicsUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations