Advertisement

The three-loop Adler D-function for \( \mathcal{N}=1 \) SQCD regularized by dimensional reduction

  • S. S. Aleshin
  • A. L. Kataev
  • K. V. StepanyantzEmail author
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

The three-loop Adler D-function for \( \mathcal{N}=1 \) SQCD in the \( \overline{\mathrm{DR}} \) scheme is calculated starting from the three-loop result recently obtained with the higher covariant derivative regularization. For this purpose, for the theory regularized by higher derivatives we find a subtraction scheme in which the Green functions coincide with the ones obtained with the dimensional reduction and the modified minimal subtraction prescription for the renormalization of the SQCD coupling constant and of the matter superfields. Also we calculate the D-function in the \( \overline{\mathrm{DR}} \) scheme for all renormalization constants (including the one for the electromagnetic coupling constant which appears due to the SQCD corrections). It is shown that the results do not satisfy the NSVZ-like equation relating the D-function to the anomalous dimension of the matter superfields. However, the NSVZ-like scheme can be constructed with the help of a properly tuned finite renormalization. It is also demonstrated that the three-loop D-function defined in terms of the bare couplings with the dimensional reduction does not satisfy the NSVZ-like equation for an arbitrary renormalization prescription. We also investigate a possibility to present the results in the form of the β-expansion and the scheme dependence of this expansion.

Keywords

Renormalization Group Renormalization Regularization and Renormalons Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    KEDR collaboration, Precise measurement of R uds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788 (2019) 42 [arXiv:1805.06235] [INSPIRE].
  2. [2]
    F. Jegerlehner, Muon g − 2 theory: the hadronic part, EPJ Web Conf. 166 (2018) 00022 [arXiv:1705.00263] [INSPIRE].
  3. [3]
    S.L. Adler, Some simple vacuum polarization phenomenology: e + e hadrons: the μ-mesic atom x-ray discrepancy and g μ − 2, Phys. Rev. D 10 (1974) 3714 [INSPIRE].
  4. [4]
    S. Eidelman, F. Jegerlehner, A.L. Kataev and O. Veretin, Testing nonperturbative strong interaction effects via the Adler function, Phys. Lett. B 454 (1999) 369 [hep-ph/9812521] [INSPIRE].
  5. [5]
    A.L. Kataev, A.E. Kazantsev and K.V. Stepanyantz, The Adler D-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation, Nucl. Phys. B 926 (2018) 295 [arXiv:1710.03941] [INSPIRE].
  6. [6]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for N = 1 SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].
  7. [7]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher order corrections to σ tot(e + e hadrons) in quantum chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].
  8. [8]
    W. Celmaster and R.J. Gonsalves, An analytic calculation of higher order quantum chromodynamic corrections in e + e annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].
  9. [9]
    M. Dine and J.R. Sapirstein, Higher order QCD corrections in e + e annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].
  10. [10]
    S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(α s3)-corrections to σ tot(e + e hadrons) and Γ(τ ν τ + hadrons) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].
  11. [11]
    L.R. Surguladze and M.A. Samuel, Total hadronic cross-section in e + e annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66 (1991) 560 [Erratum ibid. 66 (1991) 2416] [INSPIRE].
  12. [12]
    K.G. Chetyrkin, Corrections of order α S3 to R had in pQCD with light gluinos, Phys. Lett. B 391 (1997) 402 [hep-ph/9608480] [INSPIRE].
  13. [13]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order α s4 QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [INSPIRE].
  14. [14]
    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Adler function, sum rules and Crewther relation of order O(α s4): the singlet case, Phys. Lett. B 714 (2012) 62 [arXiv:1206.1288] [INSPIRE].
  15. [15]
    K.G. Chetyrkin, S.G. Gorishnii, A.L. Kataev, S.A. Larin and F.V. Tkachov, Scalar quarks: higher corrections to σ tot(e + e hadrons), Phys. Lett. B 116 (1981) 455 [INSPIRE].
  16. [16]
    A.L. Kataev and A.A. Pivovarov, Perturbative corrections to σ tot(e + e hadrons) in supersymmetric QCD, JETP Lett. 38 (1983) 369 [Pisma Zh. Eksp. Teor. Fiz. 38 (1983) 309] [INSPIRE].
  17. [17]
    G. Altarelli, B. Mele and R. Petronzio, Broken supersymmetric QCD and e + e hadronic cross-sections, Phys. Lett. B 129 (1983) 456 [INSPIRE].
  18. [18]
    M. Shifman and K. Stepanyantz, Exact Adler function in supersymmetric QCD, Phys. Rev. Lett. 114 (2015) 051601 [arXiv:1412.3382] [INSPIRE].
  19. [19]
    M. Shifman and K.V. Stepanyantz, Derivation of the exact expression for the D function in N = 1 SQCD, Phys. Rev. D 91 (2015) 105008 [arXiv:1502.06655] [INSPIRE].
  20. [20]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].
  21. [21]
    D.R.T. Jones, More on the axial anomaly in supersymmetric Yang-Mills theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].
  22. [22]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in supersymmetric gauge theories: instantons versus traditional approach, Phys. Lett. B 166 (1986) 329 [Sov. J. Nucl. Phys. 43 (1986) 294] [Yad. Fiz. 43 (1986) 459] [INSPIRE].
  23. [23]
    M.A. Shifman and A.I. Vainshtein, Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion, Nucl. Phys. B 277 (1986) 456 [Sov. Phys. JETP 64 (1986) 428] [Zh. Eksp. Teor. Fiz. 91 (1986) 723] [INSPIRE].
  24. [24]
    I.O. Goriachuk, A.L. Kataev and K.V. Stepanyantz, A class of the NSVZ renormalization schemes for N = 1 SQED, Phys. Lett. B 785 (2018) 561 [arXiv:1808.02050] [INSPIRE].
  25. [25]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].
  26. [26]
    A.L. Kataev and K.V. Stepanyantz, The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions, Theor. Math. Phys. 181 (2014) 1531 [arXiv:1405.7598] [INSPIRE].
  27. [27]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].
  28. [28]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].
  29. [29]
    I. Jack, D.R.T. Jones and A. Pickering, The connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].
  30. [30]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [INSPIRE].
  31. [31]
    R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [INSPIRE].
  32. [32]
    L. Mihaila, Precision calculations in supersymmetric theories, Adv. High Energy Phys. 2013 (2013) 607807 [arXiv:1310.6178] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].
  34. [34]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].
  35. [35]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].
  36. [36]
    A.A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13 (1972) 1064 [Teor. Mat. Fiz. 13 (1972) 174] [INSPIRE].
  37. [37]
    V.K. Krivoshchekov, Invariant regularizations for supersymmetric gauge theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291] [INSPIRE].
  38. [38]
    P.C. West, Higher derivative regulation of supersymmetric theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].
  39. [39]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [hep-th/0304083] [INSPIRE].
  40. [40]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].
  41. [41]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].
  42. [42]
    K.V. Stepanyantz, Higher covariant derivative regularization for calculations in supersymmetric theories, Proc. Steklov Inst. Math. 272 (2011) 256 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  44. [44]
    A.E. Kazantsev and K.V. Stepanyantz, Relation between two-point Greens functions of N = 1 SQED with N f flavors, regularized by higher derivatives, in the three-loop approximation, J. Exp. Theor. Phys. 120 (2015) 618 [Zh. Eksp. Teor. Fiz. 147 (2015) 714] [arXiv:1410.1133] [INSPIRE].
  45. [45]
    I.L. Buchbinder and K.V. Stepanyantz, The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories, Nucl. Phys. B 883 (2014) 20 [arXiv:1402.5309] [INSPIRE].
  46. [46]
    I.L. Buchbinder, N.G. Pletnev and K.V. Stepanyantz, Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories, Phys. Lett. B 751 (2015) 434 [arXiv:1509.08055] [INSPIRE].
  47. [47]
    S.S. Aleshin, A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization, JHEP 05 (2016) 014 [arXiv:1603.04347] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V. Yu. Shakhmanov and K.V. Stepanyantz, Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization, Nucl. Phys. B 920 (2017) 345 [arXiv:1703.10569] [INSPIRE].
  49. [49]
    A.E. Kazantsev, V.Y. Shakhmanov and K.V. Stepanyantz, New form of the exact NSVZ β-function: the three-loop verification for terms containing Yukawa couplings, JHEP 04 (2018) 130 [arXiv:1803.06612] [INSPIRE].
  50. [50]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].
  51. [51]
    K.V. Stepanyantz, The NSVZ β-function and the Schwinger-Dyson equations for N = 1 SQED with N f flavors, regularized by higher derivatives, JHEP 08 (2014) 096 [arXiv:1404.6717] [INSPIRE].
  52. [52]
    I.V. Nartsev and K.V. Stepanyantz, Exact renormalization of the photino mass in softly broken N = 1 SQED with N f flavors regularized by higher derivatives, JHEP 04 (2017) 047 [arXiv:1610.01280] [INSPIRE].
  53. [53]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].
  54. [54]
    I.V. Nartsev and K.V. Stepanyantz, NSVZ-like scheme for the photino mass in softly broken N = 1 SQED regularized by higher derivatives, JETP Lett. 105 (2017) 69 [arXiv:1611.09091] [INSPIRE].
  55. [55]
    K.V. Stepanyantz, Non-renormalization of the V cc-vertices in N = 1 supersymmetric theories, Nucl. Phys. B 909 (2016) 316 [arXiv:1603.04801] [INSPIRE].
  56. [56]
    A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop polarization operator of the quantum gauge superfield for N = 1 SYM regularized by higher derivatives, Mod. Phys. Lett. A 32 (2017) 1750194 [arXiv:1709.08575] [INSPIRE].
  57. [57]
    K.V. Stepanyantz, Structure of quantum corrections in N = 1 supersymmetric gauge theories, Bled Workshops Phys. 18 (2017) 197 [arXiv:1711.09194] [INSPIRE].
  58. [58]
    S.V. Mikhailov, Generalization of BLM procedure and its scales in any order of pQCD: a practical approach, JHEP 06 (2007) 009 [hep-ph/0411397] [INSPIRE].
  59. [59]
    A.L. Kataev and S.V. Mikhailov, New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models, Theor. Math. Phys. 170 (2012) 139 [Teor. Mat. Fiz. 170 (2012) 174] [arXiv:1011.5248] [INSPIRE].
  60. [60]
    A.A. Slavnov, The Pauli-Villars regularization for non-Abelian gauge theories, Teor. Mat. Fiz. 33 (1977) 210 [INSPIRE].
  61. [61]
    A. Soloshenko and K. Stepanyantz, Two loop renormalization of N = 1 supersymmetric electrodynamics, regularized by higher derivatives, hep-th/0203118 [INSPIRE].
  62. [62]
    A.A. Soloshenko and K.V. Stepanyants, Two-loop anomalous dimension of N = 1 supersymmetric quantum electrodynamics regularized using higher covariant derivatives, Theor. Math. Phys. 134 (2003) 377 [Teor. Mat. Fiz. 134 (2003) 430] [INSPIRE].
  63. [63]
    S.S. Aleshin, A.L. Kataev and K.V. Stepanyantz, Structure of three-loop contributions to the β-function of N = 1 supersymmetric QED with N f flavors regularized by the dimensional reduction, JETP Lett. 103 (2016) 77 [arXiv:1511.05675] [INSPIRE].
  64. [64]
    S.S. Aleshin, I.O. Goriachuk, A.L. Kataev and K.V. Stepanyantz, The NSVZ scheme for N = 1 SQED with N f flavors, regularized by the dimensional reduction, in the three-loop approximation, Phys. Lett. B 764 (2017) 222 [arXiv:1610.08034] [INSPIRE].
  65. [65]
    A.A. Vladimirov, Unambiguity of renormalization group calculations in QCD, Sov. J. Nucl. Phys. 31 (1980) 558 [Yad. Fiz. 31 (1980) 1083] [INSPIRE].
  66. [66]
    A.L. Kataev, Conformal symmetry limit of QED and QCD and identities between perturbative contributions to deep-inelastic scattering sum rules, JHEP 02 (2014) 092 [arXiv:1305.4605] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].
  68. [68]
    S.J. Brodsky, M. Mojaza and X.-G. Wu, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations, Phys. Rev. D 89 (2014) 014027 [arXiv:1304.4631] [INSPIRE].
  69. [69]
    A.L. Kataev and S.V. Mikhailov, Generalization of the Brodsky-Lepage-Mackenzie optimization within the β-expansion and the principle of maximal conformality, Phys. Rev. D 91 (2015) 014007 [arXiv:1408.0122] [INSPIRE].
  70. [70]
    H.-H. Ma, X.-G. Wu, Y. Ma, S.J. Brodsky and M. Mojaza, Setting the renormalization scale in perturbative QCD: comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach, Phys. Rev. D 91 (2015) 094028 [arXiv:1504.01260] [INSPIRE].
  71. [71]
    A.L. Kataev and S.V. Mikhailov, The β-expansion formalism in perturbative QCD and its extension, JHEP 11 (2016) 079 [arXiv:1607.08698] [INSPIRE].
  72. [72]
    G. Cvetič and A.L. Kataev, Adler function and Bjorken polarized sum rule: perturbation expansions in powers of the SU(N c) conformal anomaly and studies of the conformal symmetry limit, Phys. Rev. D 94 (2016) 014006 [arXiv:1604.00509] [INSPIRE].
  73. [73]
    M. Beneke and V.M. Braun, Naive non-Abelianization and resummation of fermion bubble chains, Phys. Lett. B 348 (1995) 513 [hep-ph/9411229] [INSPIRE].
  74. [74]
    J. Chyla, On the BLM scale fixing procedure, its generalizations and thegenuinehigher order corrections, Phys. Lett. B 356 (1995) 341 [hep-ph/9505408] [INSPIRE].
  75. [75]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].
  76. [76]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Computation of the α s2 correction σ tot(e + e hadrons) in QCD, IYaI-P-0170, (1980).Google Scholar
  77. [77]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial x space technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].
  78. [78]
    W. Celmaster and R.J. Gonsalves, Fourth order QCD contributions to the e + e annihilation cross-section, Phys. Rev. D 21 (1980) 3112 [INSPIRE].
  79. [79]
    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector correlator in massless QCD at order O(α s4) and the QED β-function at five loop, JHEP 07 (2012) 017 [arXiv:1206.1284] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Quantum PhysicsInstitute for Information Transmission Problems of the Russian Academy of SciencesMoscowRussia
  2. 2.Department of Theoretical PhysicsInstitute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  3. 3.Department of Fundamental Physics and EnergeticsMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Department of Theoretical Physics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations