Advertisement

Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors

  • The KIMS collaboration
  • K. W. Kim
  • G. Adhikari
  • P. Adhikari
  • S. Choi
  • C. Ha
  • I. S. Hahn
  • E. J. Jeon
  • H. W. Joo
  • W. G. Kang
  • H. J. Kim
  • N. Y. Kim
  • S. K. Kim
  • Y. D. Kim
  • Y. H. Kim
  • Y. J. Ko
  • H. S. LeeEmail author
  • J. S. Lee
  • J. Y. Lee
  • M. H. Lee
  • D. S. Leonard
  • S. L. Olsen
  • B. J. Park
  • H. K. Park
  • H. S. Park
  • K. S. Park
Open Access
Regular Article - Experimental Physics

Abstract

Limits on the cross section for weakly interacting massive particles (WIMPs) elastic scattering on nuclei in NaI(Tl) detectors at the Yangyang Underground Laboratory are obtained from a 2967.4 kg·day data exposure. The nuclei recoiling from the scattering process are identified by the pulse shape of the scintillation light signals that they produce. The data are consistent with a no nuclear-recoil hypothesis, and WIMP-mass-dependent 90% confidence-level upper-limits are set on WIMP-nuclei elastic scattering cross sections. These limits partially exclude the DAMA/LIBRA allowed region for WIMP-sodium interactions with the same NaI(Tl) target material. The 90% confidence level upper limit on the WIMP-nucleon spin-independent cross section is 3.26×10−4 pb for a WIMP mass of 10 GeV/c2.

Keywords

Dark matter Dark Matter and Double Beta Decay (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
  2. [2]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  3. [3]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  5. [5]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  6. [6]
    DAMA collaboration, Search for WIMP annual modulation signature: results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis, Phys. Lett. B 480 (2000) 23 [INSPIRE].
  7. [7]
    DAMA collaboration, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].
  8. [8]
    DAMA, LIBRA collaboration, New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].
  9. [9]
    R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Bernabei et al., First model independent results from DAMA/LIBRA-phase2, Nucl. Phys. Atom. Ener. 19 (2018) 307 [arXiv:1805.10486] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.C. Kim et al., New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett. 108 (2012) 181301 [arXiv:1204.2646] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  14. [14]
    PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  15. [15]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  16. [16]
    DM-Ice collaboration, First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17, Phys. Rev. D 95 (2017) 032006 [arXiv:1602.05939] [INSPIRE].
  17. [17]
    J. Amaré et al., Preliminary results of ANAIS-25, Nucl. Instrum. Meth. A 742 (2014) 187 [arXiv:1308.3478] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Xu, F. Calaprice, F. Froborg, E. Shields and B. Suerfu, SABREa test of DAMA with high-purity NaI(Tl) crystals, AIP Conf. Proc. 1672 (2015) 040001 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    P. Adhikari et al., Understanding internal backgrounds in NaI(Tl) crystals toward a 200 kg array for the KIMS-NaI experiment, Eur. Phys. J. C 76 (2016) 185 [arXiv:1510.04519] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    PICO-LON collaboration, Dark matter search project PICO-LON, J. Phys. Conf. Ser. 718 (2016) 042022 [arXiv:1512.04645] [INSPIRE].
  21. [21]
    COSINUS collaboration, Results from the first cryogenic NaI detector for the COSINUS project, 2017 JINST 12 P11007 [arXiv:1705.11028] [INSPIRE].
  22. [22]
    G. Adhikari et al., Initial performance of the COSINE-100 experiment, Eur. Phys. J. C 78 (2018) 107 [arXiv:1710.05299] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Zinteractions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B.M. Roberts, V.A. Dzuba, V.V. Flambaum, M. Pospelov and Y.V. Stadnik, Dark matter scattering on electrons: accurate calculations of atomic excitations and implications for the DAMA signal, Phys. Rev. D 93 (2016) 115037 [arXiv:1604.04559] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K.W. Kim et al., Tests on NaI(Tl) crystals for WIMP search at the Yangyang underground laboratory, Astropart. Phys. 62 (2015) 249 [arXiv:1407.1586] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Adhikari et al., Understanding NaI(Tl) crystal background for dark matter searches, Eur. Phys. J. C 77 (2017) 437 [arXiv:1703.01982] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H.S. Lee et al., Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal, JHEP 08 (2015) 093 [arXiv:1503.05253] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    KIMS collaboration, Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors, Phys. Rev. Lett. 99 (2007) 091301 [arXiv:0704.0423] [INSPIRE].
  29. [29]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Kims collaboration, First limit on WIMP cross section with low background CsI(Tl) crystal detector, Phys. Lett. B 633 (2006) 201 [astro-ph/0509080] [INSPIRE].
  31. [31]
    H.S. Lee et al., Development of low-background CsI(Tl) crystals for WIMP search, Nucl. Instrum. Meth. A 571 (2007) 644 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    UK Dark Matter collaboration, Limits on WIMP cross-sections from the NAIAD experiment at the Boulby underground laboratory, Phys. Lett. B 616 (2005) 17 [hep-ex/0504031] [INSPIRE].
  33. [33]
    DAMA collaboration, The DAMA/LIBRA apparatus, Nucl. Instrum. Meth. A 592 (2008) 297 [arXiv:0804.2738] [INSPIRE].
  34. [34]
    R. Bernabei et al., Performances of the new high quantum efficiency PMTs in DAMA/LIBRA, 2012 JINST 7 P03009 [INSPIRE].
  35. [35]
    H.W. Joo et al., Quenching factor measurement for NaI(Tl) scintillation crystal, Astropart. Phys. 108 (2019) 50 [arXiv:1809.10310] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    ENDF/B-VII.1 webpage, https://www.nndc.bnl.gov/sigma/, U.S.A. (2011).
  37. [37]
    H.J. Kim et al., Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches, Astropart. Phys. 20 (2004) 549 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.H. Lee et al., Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search, Nucl. Instrum. Meth. A 782 (2015) 133 [arXiv:1502.03800] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H.S. Lee et al., Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals, 2014 JINST 9 P11015 [arXiv:1409.0948] [INSPIRE].
  40. [40]
    V.A. Kudryavtsev et al., Study and suppression of anomalous fast events in inorganic scintillators for dark matter searches, Astropart. Phys. 17 (2002) 401 [hep-ex/0109013] [INSPIRE].
  41. [41]
    S.C. Kim et al., Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator, Astropart. Phys. 35 (2012) 781 [arXiv:1108.4353] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    CRESST collaboration, A detector module with highly efficient surface-alpha event rejection operated in CRESST-II phase 2, Eur. Phys. J. C 75 (2015) 352 [arXiv:1410.1753] [INSPIRE].
  43. [43]
    K.W. Kim et al., Measurement of low-energy events due to 222 Rn daughter contamination on the surface of a NaI(Tl) crystal, Astropart. Phys. 102 (2018) 51 [arXiv:1801.06948] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.F. Knoll, Radiation detection and measurement, John Wiley and Sons, Hoboken, NJ, U.S.A. (2010) [INSPIRE].Google Scholar
  45. [45]
    M.J. Weber, S.E. Derenzo and W.W. Moses, Measurements of ultrafast scintillation rise times: evidence of energy transfer mechanisms, J. Lumin. 87-89 (2000) 830.Google Scholar
  46. [46]
    B. Ahmed et al., The NAIAD experiment for WIMP searches at Boulby mine and recent results, Astropart. Phys. 19 (2003) 691 [hep-ex/0301039] [INSPIRE].
  47. [47]
    H.S. Lee, Dark matter search with CsI(Tl) crystals, Ph.D. thesis, Seoul Natl. U., Seoul, Korea (2007).Google Scholar
  48. [48]
    A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    R. Bernabei et al., New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso, Phys. Lett. B 389 (1996) 757 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.I. Collar, Quenching and channeling of nuclear recoils in NaI(Tl): implications for dark-matter searches, Phys. Rev. C 88 (2013) 035806 [arXiv:1302.0796] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Xu et al., Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold, Phys. Rev. C 92 (2015) 015807 [arXiv:1503.07212] [INSPIRE].ADSGoogle Scholar
  52. [52]
    COSINE-100 collaboration, Background model for the NaI(Tl) crystals in COSINE-100, Eur. Phys. J. C 78 (2018) 490 [arXiv:1804.05167] [INSPIRE].
  53. [53]
    G. Adhikari et al., An experiment to search for dark-matter interactions using sodium iodide detectors, Nature 564 (2018) 83 [Erratum ibid. 566 (2019) E2] [INSPIRE].
  54. [54]
    J. Amaré et al., Performance of ANAIS-112 experiment after the first year of data taking, Eur. Phys. J. C 79 (2019) 228 [arXiv:1812.01472] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • The KIMS collaboration
  • K. W. Kim
    • 1
  • G. Adhikari
    • 2
  • P. Adhikari
    • 2
  • S. Choi
    • 3
  • C. Ha
    • 1
  • I. S. Hahn
    • 4
  • E. J. Jeon
    • 1
  • H. W. Joo
    • 3
  • W. G. Kang
    • 1
  • H. J. Kim
    • 5
  • N. Y. Kim
    • 1
  • S. K. Kim
    • 3
  • Y. D. Kim
    • 1
    • 2
  • Y. H. Kim
    • 1
    • 6
  • Y. J. Ko
    • 1
  • H. S. Lee
    • 1
    Email author
  • J. S. Lee
    • 1
  • J. Y. Lee
    • 5
  • M. H. Lee
    • 1
  • D. S. Leonard
    • 1
  • S. L. Olsen
    • 1
  • B. J. Park
    • 1
    • 7
  • H. K. Park
    • 8
  • H. S. Park
    • 6
  • K. S. Park
    • 1
  1. 1.Center for Underground PhysicsInstitute for Basic Science (IBS)DaejonKorea
  2. 2.Department of PhysicsSejong UniversitySeoulKorea
  3. 3.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  4. 4.Department of Science EducationEwha Womans UniversitySeoulKorea
  5. 5.Department of PhysicsKyungpook National UniversityDaeguKorea
  6. 6.Korea Research Institute of Standards and ScienceDaejonKorea
  7. 7.University of Science and Technology (UST)DaejonKorea
  8. 8.Department of Accelerator ScienceKorea UniversitySejongKorea

Personalised recommendations