Advertisement

Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT

  • Sebastian HoofEmail author
  • Felix Kahlhoefer
  • Pat Scott
  • Christoph Weniger
  • Martin White
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We present global fits of cosmologically stable axion-like particle and QCD axion models in the mass range 0.1 neV to 10 eV. We focus on the case where the Peccei-Quinn symmetry is broken before the end of inflation, such that the initial value of the axion field can be considered to be homogeneous throughout the visible Universe. We include detailed likelihood functions from light-shining-through-wall experiments, haloscopes, helioscopes, the axion relic density, horizontal branch stars, supernova 1987A, white dwarf cooling, and gamma-ray observations. We carry out both frequentist and Bayesian analyses, with and without the inclusion of white dwarf cooling. We explore the degree of fine-tuning present in different models and identify parameter regions where it is possible for QCD axion models to account for both the dark matter in the Universe and the cooling hints, comparing them to specific DFSZ- and KSVZ-type models. We find the most credible parameter regions, allowing us to set (prior-dependent) upper and lower bounds on the axion mass. Our analysis also suggests that QCD axions in this scenario most probably make up a non-negligible but sub-dominant component of the dark matter in the Universe.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89 [arXiv:1801.08127] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.S. Turner, Cosmic and local mass density ofinvisibleaxions, Phys. Rev. D 33 (1986) 889.ADSGoogle Scholar
  10. [10]
    J. Isern, M. Hernanz and E. Garcia-Berro, Axion cooling of white dwarfs, Astrophys. J. 392 (1992) L23 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.H. Corsico et al., The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass, Mon. Not. Roy. Astron. Soc. 424 (2012) 2792 [arXiv:1205.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.H. Corsico et al., An independent limit on the axion mass from the variable white dwarf star R548, JCAP 12 (2012) 010 [arXiv:1211.3389] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for stellar cooling excesses, JCAP 05 (2016) 057 [arXiv:1512.08108] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.H. Córsico et al., An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2, JCAP 07 (2016) 036 [arXiv:1605.06458] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    T. Battich et al., First axion bounds from a pulsating helium-rich white dwarf star, JCAP 08 (2016) 062 [arXiv:1605.07668] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Giannotti et al., Stellar recipes for axion hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?, Phys. Rev. D 76 (2007) 121301 [arXiv:0707.4312] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a kiloparsec-scale axionscope, Phys. Rev. D 77 (2008) 063001 [arXiv:0712.2825] [INSPIRE].ADSGoogle Scholar
  19. [19]
    I.F.M. Albuquerque and A. Chou, A faraway quasar in the direction of the highest energy auger event, JCAP 08 (2010) 016 [arXiv:1001.0972] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. De Angelis, G. Galanti and M. Roncadelli, Relevance of axion-like particles for very-high-energy astrophysics, Phys. Rev. D 84 (2011) 105030 [Erratum ibid. D 87 (2013) 109903] [arXiv:1106.1132] [INSPIRE].
  21. [21]
    D. Horns and M. Meyer, Indications for a pair-production anomaly from the propagation of VHE gamma-rays, JCAP 02 (2012) 033 [arXiv:1201.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Meyer, D. Horns and M. Raue, First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations, Phys. Rev. D 87 (2013) 035027 [arXiv:1302.1208] [INSPIRE].ADSGoogle Scholar
  23. [23]
    GAMBIT collaboration, GAMBIT: the Global And Modular Beyond-the-standard-model Inference Tool, Eur. Phys. J. C 77 (2017) 784 [arXiv:1705.07908] [INSPIRE].
  24. [24]
    GAMBIT collaboration, ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods, Eur. Phys. J. C 77 (2017) 795 [arXiv:1705.07919] [INSPIRE].
  25. [25]
    The GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].
  26. [26]
    The GAMBIT Flavour Workgroup collaboration, FlavBit: a GAMBIT module for computing flavour observables and likelihoods, Eur. Phys. J. C 77 (2017) 786 [arXiv:1705.07933] [INSPIRE].
  27. [27]
    GAMBIT Models Workgroup collaboration, SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables, Eur. Phys. J. C 78 (2018) 22 [arXiv:1705.07936] [INSPIRE].
  28. [28]
    GAMBIT collaboration, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].
  29. [29]
    GAMBIT collaboration, A global fit of the MSSM with GAMBIT, Eur. Phys. J. C 77 (2017) 879 [arXiv:1705.07917] [INSPIRE].
  30. [30]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  31. [31]
    GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
  32. [32]
    P. Athron et al., Impact of vacuum stability, perturbativity and XENON1T on global fits of ℤ 2 and ℤ 3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].
  33. [33]
    GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
  34. [34]
    GAMBIT collaboration, Combined collider constraints on neutralinos and charginos, arXiv:1809.02097 [INSPIRE].
  35. [35]
    GAMIT collaboration, Supplementary Data: axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, available on zenodo (2018).Google Scholar
  36. [36]
    J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1.ADSCrossRefGoogle Scholar
  37. [37]
    M. Kuster, G. Raffelt and B. Beltran, Axions: theory, cosmology, and experimental searches. Proceedings, 1st Joint ILIAS-CERN-CAST axion training, Geneva, Switzerland, November 30-December 2, 2005, Lect. Notes Phys. 741 (2008) 1.Google Scholar
  38. [38]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [arXiv:1301.1123] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A.R. Zhitnitskij, On possible suppression of the axion-hadron interactions, Sov. J. Nucl. Phys. 31 (1980) 260.Google Scholar
  44. [44]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. 104B (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.D. Schwartz, Quantum field theory and the standard model, Cambridge University Press, Cambridge U.K. (2014).Google Scholar
  46. [46]
    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. 88B (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].
  47. [47]
    M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett. 83 (1999) 2526 [hep-ph/9904483] [INSPIRE].
  48. [48]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    S. Borsányi et al., Axion cosmology, lattice QCD and the dilute instanton gas, Phys. Lett. B 752 (2016) 175 [arXiv:1508.06917] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Petreczky, H.-P. Schadler and S. Sharma, The topological susceptibility in finite temperature QCD and axion cosmology, Phys. Lett. B 762 (2016) 498 [arXiv:1606.03145] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.D. Pisarski and L.G. Yaffe, The density of instantons at finite temperature, Phys. Lett. 97B (1980) 110 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Weinberg, Cosmology, Oxford University Press, Oxford U.K. (2008).zbMATHGoogle Scholar
  60. [60]
    J.A. Frieman and A.H. Jaffe, Cosmological constraints on pseudoNambu-Goldstone bosons, Phys. Rev. D 45 (1992) 2674 [INSPIRE].ADSGoogle Scholar
  61. [61]
    D.H. Lyth, Axions and inflation: sitting in the vacuum, Phys. Rev. D 45 (1992) 3394 [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    K. Strobl and T.J. Weiler, Anharmonic evolution of the cosmic axion density spectrum, Phys. Rev. D 50 (1994) 7690 [astro-ph/9405028] [INSPIRE].
  63. [63]
    K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP 09 (2008) 005 [arXiv:0806.0497] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    O. Wantz and E.P.S. Shellard, Axion cosmology revisited, Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K.J. Mack and P.J. Steinhardt, Cosmological problems with multiple axion-like fields, JCAP 05 (2011) 001 [arXiv:0911.0418] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K.J. Mack, Axions, inflation and the anthropic principle, JCAP 07 (2011) 021 [arXiv:0911.0421] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSzbMATHGoogle Scholar
  68. [68]
    E.W. Kolb and M.S. Turner, The early universe, Frontiers in Physics, Westview Press, U.S.A. (1994).Google Scholar
  69. [69]
    R.L. Davis, Goldstone bosons in string models of galaxy formation, Phys. Rev. D 32 (1985) 3172 [INSPIRE].ADSGoogle Scholar
  70. [70]
    R.L. Davis, Cosmic axions from cosmic strings, Phys. Lett. B 180 (1986) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D. Harari and P. Sikivie, On the evolution of global strings in the early universe, Phys. Lett. B 195 (1987) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    C. Hagmann and P. Sikivie, Computer simulations of the motion and decay of global strings, Nucl. Phys. B 363 (1991) 247 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    R.A. Battye and E.P.S. Shellard, Global string radiation, Nucl. Phys. B 423 (1994) 260 [astro-ph/9311017] [INSPIRE].
  74. [74]
    R.A. Battye and E.P.S. Shellard, Axion string constraints, Phys. Rev. Lett. 73 (1994) 2954 [Erratum ibid. 76 (1996) 2203] [astro-ph/9403018] [INSPIRE].
  75. [75]
    C. Hagmann, S. Chang and P. Sikivie, Axions from string decay, Nucl. Phys. Proc. Suppl. 72 (1999) 81 [hep-ph/9807428] [INSPIRE].
  76. [76]
    M. Yamaguchi, M. Kawasaki and J. Yokoyama, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett. 82 (1999) 4578 [hep-ph/9811311] [INSPIRE].
  77. [77]
    C. Hagmann, S. Chang and P. Sikivie, Axion radiation from strings, Phys. Rev. D 63 (2001) 125018 [hep-ph/0012361] [INSPIRE].
  78. [78]
    T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Production of dark matter axions from collapse of string-wall systems, Phys. Rev. D 85 (2012) 105020 [Erratum ibid. D 86 (2012) 089902] [arXiv:1202.5851] [INSPIRE].
  79. [79]
    T. Hiramatsu, M. Kawasaki and K. Saikawa, Evolution of string-wall networks and axionic domain wall problem, JCAP 08 (2011) 030 [arXiv:1012.4558] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Hiramatsu et al., Improved estimation of radiated axions from cosmological axionic strings, Phys. Rev. D 83 (2011) 123531 [arXiv:1012.5502] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].ADSGoogle Scholar
  82. [82]
    L. Fleury and G.D. Moore, Axion dark matter: strings and their cores, JCAP 01 (2016) 004 [arXiv:1509.00026] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    V.B. Klaer and G.D. Moore, How to simulate global cosmic strings with large string tension, JCAP 10 (2017) 043 [arXiv:1707.05566] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    V.B. Klaer and G.D. Moore, The dark-matter axion mass, JCAP 11 (2017) 049 [arXiv:1708.07521] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Gorghetto, E. Hardy and G. Villadoro, Axions from strings: the attractive solution, JHEP 07 (2018) 151 [arXiv:1806.04677] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  86. [86]
    P. Sikivie, Axion cosmology, Lect. Notes Phys. 741 (2008) 19 [astro-ph/0610440] [INSPIRE].
  87. [87]
    M.S. Turner, Early-universe thermal production of not-so-invisible axions, Phys. Rev. Lett. 59 (1987) 2489 [Erratum ibid. 60 (1988) 1101] [INSPIRE].
  88. [88]
    S. Chang and K. Choi, Hadronic axion window and the big bang nucleosynthesis, Phys. Lett. B 316 (1993) 51 [hep-ph/9306216] [INSPIRE].
  89. [89]
    S. Hannestad, A. Mirizzi and G. Raffelt, A new cosmological mass limit on thermal relic axions, JCAP 07 (2005) 002 [hep-ph/0504059] [INSPIRE].
  90. [90]
    E. Masso, F. Rota and G. Zsembinszki, Axion thermalization in the early universe, Phys. Rev. D 66 (2002) 023004 [hep-ph/0203221] [INSPIRE].
  91. [91]
    P. Graf and F.D. Steffen, Thermal axion production in the primordial quark-gluon plasma, Phys. Rev. D 83 (2011) 075011 [arXiv:1008.4528] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. Salvio, A. Strumia and W. Xue, Thermal axion production, JCAP 01 (2014) 011 [arXiv:1310.6982] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R.Z. Ferreira and A. Notari, Observable windows for the QCD axion through the number of relativistic species, Phys. Rev. Lett. 120 (2018) 191301 [arXiv:1801.06090] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Hannestad and G. Raffelt, Cosmological mass limits on neutrinos, axions and other light particles, JCAP 04 (2004) 008 [hep-ph/0312154] [INSPIRE].
  95. [95]
    A. Melchiorri, O. Mena and A. Slosar, Improved cosmological bound on the thermal axion mass, Phys. Rev. D 76 (2007) 041303 [arXiv:0705.2695] [INSPIRE].ADSGoogle Scholar
  96. [96]
    S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Cosmological constraints on neutrino plus axion hot dark matter, JCAP 08 (2007) 015 [arXiv:0706.4198] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5, JCAP 04 (2008) 019 [arXiv:0803.1585] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Neutrino and axion hot dark matter bounds after WMAP-7, JCAP 08 (2010) 001 [arXiv:1004.0695] [INSPIRE].ADSGoogle Scholar
  99. [99]
    M. Archidiacono et al., Axion hot dark matter bounds after Planck, JCAP 10 (2013) 020 [arXiv:1307.0615] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Giusarma et al., Relic neutrinos, thermal axions and cosmology in early 2014, Phys. Rev. D 90 (2014) 043507 [arXiv:1403.4852] [INSPIRE].ADSGoogle Scholar
  101. [101]
    E. Di Valentino, S. Gariazzo, E. Giusarma and O. Mena, Robustness of cosmological axion mass limits, Phys. Rev. D 91 (2015) 123505 [arXiv:1503.00911] [INSPIRE].ADSGoogle Scholar
  102. [102]
    E. Di Valentino et al., Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data, Phys. Lett. B 752 (2016) 182 [arXiv:1507.08665] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    D. Grin, T.L. Smith and M. Kamionkowski, Axion constraints in non-standard thermal histories, Phys. Rev. D 77 (2008) 085020 [arXiv:0711.1352] [INSPIRE].ADSGoogle Scholar
  104. [104]
    D.B. Kaplan, Opening the axion window, Nucl. Phys. B 260 (1985) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    M. Srednicki, Axion couplings to matter. 1. CP conserving parts, Nucl. Phys. B 260 (1985) 689 [INSPIRE].
  106. [106]
    H. Georgi, D.B. Kaplan and L. Randall, Manifesting the invisible axion at low-energies, Phys. Lett. 169B (1986) 73 [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171 [Erratum ibid. 07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
  108. [108]
    F. Wilczek, Axions and family symmetry breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. [110]
    L. Calibbi et al., Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].ADSGoogle Scholar
  111. [111]
    M. Czerny and F. Takahashi, Multi-natural inflation, Phys. Lett. B 733 (2014) 241 [arXiv:1401.5212] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  112. [112]
    S.L. Cheng, C.Q. Geng and W.T. Ni, Axion-photon couplings in invisible axion models, Phys. Rev. D 52 (1995) 3132 [hep-ph/9506295] [INSPIRE].
  113. [113]
    J.E. Kim, Constraints on very light axions from cavity experiments, Phys. Rev. D 58 (1998) 055006 [hep-ph/9802220] [INSPIRE].
  114. [114]
    Particle Data Group, Review of particle physics 2017 update (2017).Google Scholar
  115. [115]
    L. Di Luzio, F. Mescia and E. Nardi, Redefining the axion window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    L. Di Luzio, F. Mescia and E. Nardi, Window for preferred axion models, Phys. Rev. D 96 (2017) 075003 [arXiv:1705.05370] [INSPIRE].ADSGoogle Scholar
  117. [117]
    P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental targets for photon couplings of the QCD axion, JHEP 02 (2018) 006 [arXiv:1709.06085] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    L. Di Luzio et al., Astrophobic axions, Phys. Rev. Lett. 120 (2018) 261803 [arXiv:1712.04940] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    E. Armengaud et al., Axion searches with the EDELWEISS-II experiment, JCAP 11 (2013) 067 [arXiv:1307.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    K. Ehret et al., New ALPS results on hidden-sector lightweights, Phys. Lett. B 689 (2010) 149 [arXiv:1004.1313] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    CAST collaboration, An improved limit on the axion-photon coupling from the CAST experiment, JCAP 04 (2007) 010 [hep-ex/0702006] [INSPIRE].
  122. [122]
    CAST collaboration, New CAST limit on the axion-photon interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].
  123. [123]
    S. De Panfilis et al., Limits on the abundance and coupling of cosmic axions at 4.5 μev < m a < 5.0 μev, Phys. Rev. Lett. 59 (1987) 839 [INSPIRE].
  124. [124]
    W. Wuensch et al., Results of a laboratory search for cosmic axions and other weakly coupled light particles, Phys. Rev. D 40 (1989) 3153 [INSPIRE].ADSGoogle Scholar
  125. [125]
    C. Hagmann, P. Sikivie, N.S. Sullivan and D.B. Tanner, Results from a search for cosmic axions, Phys. Rev. D 42 (1990) 1297 [INSPIRE].ADSGoogle Scholar
  126. [126]
    ADMX collaboration, Results from a high sensitivity search for cosmic axions, Phys. Rev. Lett. 80 (1998) 2043 [astro-ph/9801286] [INSPIRE].
  127. [127]
    ADMX collaboration, Large scale microwave cavity search for dark matter axions, Phys. Rev. D 64 (2001) 092003 [INSPIRE].
  128. [128]
    ADMX collaboration, An improved RF cavity search for halo axions, Phys. Rev. D 69 (2004) 011101 [astro-ph/0310042] [INSPIRE].
  129. [129]
    ADMX collaboration, A high resolution search for dark-matter axions, Phys. Rev. D 74 (2006) 012006 [astro-ph/0603108] [INSPIRE].
  130. [130]
    ADMX collaboration, A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].
  131. [131]
    ADMX collaboration, A search for invisible axion dark matter with the axion dark matter experiment, Phys. Rev. Lett. 120 (2018) 151301 [arXiv:1804.05750] [INSPIRE].
  132. [132]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  133. [133]
    H.E.S.S. collaboration, Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum, Phys. Rev. D 88 (2013) 102003 [arXiv:1311.3148] [INSPIRE].
  134. [134]
    A. Payez et al., Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP 02 (2015) 006 [arXiv:1410.3747] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    A. Ayala et al., Revisiting the bound on axion-photon coupling from globular clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    K. Van Bibber et al., Proposed experiment to produce and detect light pseudoscalars, Phys. Rev. Lett. 59 (1987) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    A.A. Anselm, Arionphoton oscillations in a steady magnetic field (in Russian), Yad. Fiz. 42 (1985) 1480 [INSPIRE].
  138. [138]
    A.A. Anselm, Experimental test for arionphoton oscillations in a homogeneous constant magnetic field, Phys. Rev. D 37 (1988) 2001 [INSPIRE].ADSGoogle Scholar
  139. [139]
    ALPS collaboration, Resonant laser power build-up in ALPS: aLight-shining-through-wallsexperiment, Nucl. Instrum. Meth. A 612 (2009) 83 [arXiv:0905.4159] [INSPIRE].
  140. [140]
    OSQAR collaboration, First results from the OSQAR photon regeneration experiment: no light shining through a wall, Phys. Rev. D 78 (2008) 092003 [arXiv:0712.3362] [INSPIRE].
  141. [141]
    OSQAR collaboration, New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall, Phys. Rev. D 92 (2015) 092002 [arXiv:1506.08082] [INSPIRE].
  142. [142]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  143. [143]
    P. Sikivie, Experimental tests of the invisible axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].
  144. [144]
    P. Sikivie, Detection rates forinvisible-axion searches, Phys. Rev. D 32 (1985) 2988.ADSGoogle Scholar
  145. [145]
    K. van Bibber, P.M. McIntyre, D.E. Morris and G.G. Raffelt, A practical laboratory detector for solar axions, Phys. Rev. D 39 (1989) 2089 [INSPIRE].ADSGoogle Scholar
  146. [146]
    J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    H. Primakoff, Photo-Production of neutral mesons in nuclear electric fields and the mean life of the neutral meson, Phys. Rev. 81 (1951) 899.ADSCrossRefGoogle Scholar
  148. [148]
    A. Halprin, C.M. Andersen and H. Primakoff, Photonic decay rates and nuclear-Coulomb-field coherent production processes, Phys. Rev. 152 (1966) 1295 [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    G.G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev. D 33 (1986) 897 [INSPIRE].ADSGoogle Scholar
  150. [150]
    G.G. Raffelt, Plasmon decay into low mass bosons in stars, Phys. Rev. D 37 (1988) 1356 [INSPIRE].ADSGoogle Scholar
  151. [151]
    S. Dimopoulos, J.A. Frieman, B.W. Lynn and G.D. Starkman, Axiorecombination: a new mechanism for stellar axion production, Phys. Lett. B 179 (1986) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    S. Dimopoulos, G.D. Starkman and B.W. Lynn, Atomic enhancements in the detection of axions, Mod. Phys. Lett. A 1 (1986) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    M. Pospelov, A. Ritz and M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys. Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].ADSGoogle Scholar
  154. [154]
    A. Derevianko, V.A. Dzuba, V.V. Flambaum and M. Pospelov, Axio-electric effect, Phys. Rev. D 82 (2010) 065006 [arXiv:1007.1833] [INSPIRE].ADSGoogle Scholar
  155. [155]
    A.R. Zhitnitsky and Yu. I. Skovpen, On production and detecting of axions at penetration of electrons through matter (in Russian), Sov. J. Nucl. Phys. 29 (1979) 513 [Yad. Fiz. 29 (1979) 995] [INSPIRE].
  156. [156]
    L.M. Krauss, J.E. Moody and F. Wilczek, A stellar energy loss mechanism involving axions, Phys. Lett. 144B (1984) 391 [INSPIRE].ADSCrossRefGoogle Scholar
  157. [157]
    K.O. Mikaelian, Astrophysical implications of new light Higgs bosons, Phys. Rev. D 18 (1978) 3605 [INSPIRE].ADSGoogle Scholar
  158. [158]
    M. Fukugita, S. Watamura and M. Yoshimura, Light pseudoscalar particle and stellar energy loss, Phys. Rev. Lett. 48 (1982) 1522 [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    M. Fukugita, S. Watamura and M. Yoshimura, Astrophysical constraints on a new light axion and other weakly interacting particles, Phys. Rev. D 26 (1982) 1840 [INSPIRE].ADSGoogle Scholar
  160. [160]
    A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New solar composition: the problem with solar models revisited, Astrophys. J. 705 (2009) L123 [arXiv:0909.2668] [INSPIRE].ADSCrossRefGoogle Scholar
  161. [161]
    M. Asplund, N. Grevesse, A.J. Sauval and P. Scott, The chemical composition of the Sun, Ann. Rev. Astron. Astrophys. 47 (2009) 481 [arXiv:0909.0948] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    N. Vinyoles et al., A new generation of standard solar models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].ADSCrossRefGoogle Scholar
  163. [163]
    N. Grevesse and A.J. Sauval, Standard solar composition, Space Sci. Rev. 85 (1998) 161.ADSCrossRefGoogle Scholar
  164. [164]
    J.N. Bahcall and M.H. Pinsonneault, What do we (not) know theoretically about solar neutrino fluxes?, Phys. Rev. Lett. 92 (2004) 121301 [astro-ph/0402114] [INSPIRE].
  165. [165]
    K. Barth et al., CAST constraints on the axion-electron coupling, JCAP 05 (2013) 010 [arXiv:1302.6283] [INSPIRE].ADSCrossRefGoogle Scholar
  166. [166]
    S. Turck-Chieze et al., Solar neutrino emission deduced from a seismic model, Astrophys. J. 555 (2001) L69 [INSPIRE].ADSCrossRefGoogle Scholar
  167. [167]
    J. Hoskins et al., A search for non-virialized axionic dark matter, Phys. Rev. D 84 (2011) 121302 [arXiv:1109.4128] [INSPIRE].ADSGoogle Scholar
  168. [168]
    L. Krauss, J. Moody, F. Wilczek and D.E. Morris, Calculations for cosmic axion detection, Phys. Rev. Lett. 55 (1985) 1797 [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    ADMX collaboration, Experimental constraints on the axion dark matter halo density, Astrophys. J. 571 (2002) L27 [astro-ph/0104200] [INSPIRE].
  170. [170]
    ADMX collaboration, Design and performance of the ADMX SQUID-based microwave receiver, Nucl. Instrum. Meth. A 656 (2011) 39 [arXiv:1105.4203] [INSPIRE].
  171. [171]
    L. Visinelli and P. Gondolo, Dark matter axions revisited, Phys. Rev. D 80 (2009) 035024 [arXiv:0903.4377] [INSPIRE].ADSGoogle Scholar
  172. [172]
    L. Visinelli and P. Gondolo, Axion cold dark matter in non-standard cosmologies, Phys. Rev. D 81 (2010) 063508 [arXiv:0912.0015] [INSPIRE].ADSGoogle Scholar
  173. [173]
    P.J. Steinhardt and M.S. Turner, Saving the invisible axion, Phys. Lett. 129B (1983) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  174. [174]
    K. Yamamoto, Saving the axions in superstring models, Phys. Lett. 161B (1985) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Relaxing the cosmological bound on axions, Phys. Lett. B 192 (1987) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    D.V. Nanopoulos and M. Srednicki, Before primordial inflation, Phys. Lett. 133B (1983) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  177. [177]
    S. Dimopoulos and L.J. Hall, Inflation and invisible axions, Phys. Rev. Lett. 60 (1988) 1899 [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    H. Davoudiasl, D. Hooper and S.D. McDermott, Inflatable dark matter, Phys. Rev. Lett. 116 (2016) 031303 [arXiv:1507.08660] [INSPIRE].ADSCrossRefGoogle Scholar
  179. [179]
    S. Hoof and J. Jaeckel, QCD axions and axionlike particles in a two-inflation scenario, Phys. Rev. D 96 (2017) 115016 [arXiv:1709.01090] [INSPIRE].ADSGoogle Scholar
  180. [180]
    M. Kawasaki, F. Takahashi and M. Yamada, Suppressing the QCD axion abundance by hidden monopoles, Phys. Lett. B 753 (2016) 677 [arXiv:1511.05030] [INSPIRE].ADSCrossRefGoogle Scholar
  181. [181]
    M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].ADSCrossRefGoogle Scholar
  182. [182]
    J. Isern et al., Axions and the luminosity function of white dwarfs: the thin and thick discs and the halo, Mon. Not. Roy. Astron. Soc. 478 (2018) 2569 [arXiv:1805.00135] [INSPIRE].ADSCrossRefGoogle Scholar
  183. [183]
    G. Raffelt and L. Stodolsky, Mixing of the photon with low mass particles, Phys. Rev. D 37 (1988) 1237 [INSPIRE].ADSGoogle Scholar
  184. [184]
    C. Csáki, N. Kaloper and J. Terning, Dimming supernovae without cosmic acceleration, Phys. Rev. Lett. 88 (2002) 161302 [hep-ph/0111311] [INSPIRE].
  185. [185]
    Y. Grossman, S. Roy and J. Zupan, Effects of initial axion production and photon axion oscillation on type-IA supernova dimming, Phys. Lett. B 543 (2002) 23 [hep-ph/0204216] [INSPIRE].
  186. [186]
    A. Mirizzi, G.G. Raffelt and P.D. Serpico, Signatures of axion-like particles in the spectra of TeV gamma-ray sources, Phys. Rev. D 76 (2007) 023001 [arXiv:0704.3044] [INSPIRE].ADSGoogle Scholar
  187. [187]
    D. Hooper and P.D. Serpico, Detecting axion-like particles with Gamma Ray Telescopes, Phys. Rev. Lett. 99 (2007) 231102 [arXiv:0706.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  188. [188]
    A. De Angelis, O. Mansutti and M. Roncadelli, Axion-like particles, cosmic magnetic fields and gamma-ray astrophysics, Phys. Lett. B 659 (2008) 847 [arXiv:0707.2695] [INSPIRE].ADSCrossRefGoogle Scholar
  189. [189]
    K.A. Hochmuth and G. Sigl, Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources, Phys. Rev. D 76 (2007) 123011 [arXiv:0708.1144] [INSPIRE].ADSGoogle Scholar
  190. [190]
    A. Mirizzi and D. Montanino, Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields, JCAP 12 (2009) 004 [arXiv:0911.0015] [INSPIRE].ADSGoogle Scholar
  191. [191]
    D. Wouters and P. Brun, Irregularity in gamma ray source spectra as a signature of axionlike particles, Phys. Rev. D 86 (2012) 043005 [arXiv:1205.6428] [INSPIRE].ADSGoogle Scholar
  192. [192]
    G. Galanti and M. Roncadelli, Comment onIrregularity in gamma ray source spectra as a signature of axion-like particles”, arXiv:1305.2114 [INSPIRE].
  193. [193]
    Fermi-LAT collaboration, Search for spectral irregularities due to photon-axionlike-particle oscillations with the Fermi Large Area Telescope, Phys. Rev. Lett. 116 (2016) 161101 [arXiv:1603.06978] [INSPIRE].
  194. [194]
    Z.-Q. Xia et al., Searching for spectral oscillations due to photon-axionlike particle conversion using the Fermi-LAT observations of bright supernova remnants, Phys. Rev. D 97 (2018) 063003 [arXiv:1801.01646] [INSPIRE].ADSGoogle Scholar
  195. [195]
    J. Majumdar, F. Calore and D. Horns, Search for gamma-ray spectral modulations in galactic pulsars, JCAP 04 (2018) 048 [arXiv:1801.08813] [INSPIRE].ADSCrossRefGoogle Scholar
  196. [196]
    C. Zhang et al., New bounds on axionlike particles from the Fermi Large Area Telescope observation of PKS 2155-304, Phys. Rev. D 97 (2018) 063009 [arXiv:1802.08420] [INSPIRE].ADSGoogle Scholar
  197. [197]
    A. Mirizzi, G.G. Raffelt and P.D. Serpico, Photon-axion conversion in intergalactic magnetic fields and cosmological consequences, Lect. Notes Phys. 741 (2008) 115 [astro-ph/0607415] [INSPIRE].
  198. [198]
    J.R. Ellis and K.A. Olive, Constraints on light particles from supernova SN1987a, Phys. Lett. B 193 (1987) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  199. [199]
    G. Raffelt and D. Seckel, Bounds on exotic particle interactions from SN 1987a, Phys. Rev. Lett. 60 (1988) 1793 [INSPIRE].ADSCrossRefGoogle Scholar
  200. [200]
    M.S. Turner, Axions from SN 1987a, Phys. Rev. Lett. 60 (1988) 1797 [INSPIRE].ADSCrossRefGoogle Scholar
  201. [201]
    R. Mayle et al., Constraints on Axions from SN 1987a, Phys. Lett. B 203 (1988) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  202. [202]
    J.W. Brockway, E.D. Carlson and G.G. Raffelt, SN1987A gamma-ray limits on the conversion of pseudoscalars, Phys. Lett. B 383 (1996) 439 [astro-ph/9605197] [INSPIRE].
  203. [203]
    J.A. Grifols, E. Masso and R. Toldra, Gamma-rays from SN1987A due to pseudoscalar conversion, Phys. Rev. Lett. 77 (1996) 2372 [astro-ph/9606028] [INSPIRE].
  204. [204]
    E.L. Chupp, W.T. Vestrand and C. Reppin, Experimental limits on the radiative decay of SN1987A neutrinos, Phys. Rev. Lett. 62 (1989) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  205. [205]
    M.S. Pshirkov, P.G. Tinyakov, P.P. Kronberg and K.J. Newton-McGee, Deriving global structure of the galactic magnetic field from Faraday rotation measures of extragalactic sources, Astrophys. J. 738 (2011) 192 [arXiv:1103.0814] [INSPIRE].ADSCrossRefGoogle Scholar
  206. [206]
    R. Jansson and G.R. Farrar, A new model of the galactic magnetic field, Astrophys. J. 757 (2012) 14 [arXiv:1204.3662] [INSPIRE].ADSCrossRefGoogle Scholar
  207. [207]
    K. Sato and H. Sato, Higgs meson emission from a star and a constraint on its mass, Prog. Theor. Phys. 54 (1975) 1564 [INSPIRE].ADSCrossRefGoogle Scholar
  208. [208]
    G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept. 198 (1990) 1.ADSCrossRefGoogle Scholar
  209. [209]
    G. G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, University Of Chicago Press, Chicago U.S.A. (1996).Google Scholar
  210. [210]
    M. Salaris, M. Riello, S. Cassisi and G. Piotto, The initial helium abundance of the Galactic globular cluster system, Astron. Astrophys. 420 (2004) 911 [astro-ph/0403600] [INSPIRE].
  211. [211]
    A. Buzzoni et al., Helium abundance in globular clustersThe R-method, Astron. Astrophys. 128 (1983) 94.ADSGoogle Scholar
  212. [212]
    G.G. Raffelt, Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties, Astrophys. J. 365 (1990) 559 [INSPIRE].ADSCrossRefGoogle Scholar
  213. [213]
    N. Viaux et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301 [arXiv:1311.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  214. [214]
    Y.I. Izotov, T.X. Thuan and N.G. Guseva, A new determination of the primordial He abundance using the He I λ10830 Å emission line: cosmological implications, Mon. Not. Roy. Astron. Soc. 445 (2014) 778 [arXiv:1408.6953] [INSPIRE].ADSCrossRefGoogle Scholar
  215. [215]
    E. Aver, K.A. Olive and E.D. Skillman, The effects of He I λ10830 on helium abundance determinations, JCAP 07 (2015) 011 [arXiv:1503.08146] [INSPIRE].ADSCrossRefGoogle Scholar
  216. [216]
    G.G. Raffelt, Axion constraints from white dwarf cooling times, Phys. Lett. 166B (1986) 402 [INSPIRE].ADSCrossRefGoogle Scholar
  217. [217]
    M. Nakagawa, Y. Kohyama and N. Itoh, Axion Bremsstrahlung in dense stars, Astrophys. J. 322 (1987) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  218. [218]
    M. Nakagawa, T. Adachi, Y. Kohyama and N. Itoh, Axion bremsstrahlung in dense stars. IIPhonon contributions, Astrophys. J. 326 (1988) 241 [INSPIRE].
  219. [219]
    T. Altherr, E. Petitgirard and T. del Rio Gaztelurrutia, Axion emission from red giants and white dwarfs, Astropart. Phys. 2 (1994) 175 [hep-ph/9310304] [INSPIRE].
  220. [220]
    A.H. Corsico et al., The potential of the variable DA white dwarf G117-B15A as a tool for fundamental physics, New Astron. 6 (2001) 197 [astro-ph/0104103] [INSPIRE].
  221. [221]
    A. Bischoff-Kim, M.H. Montgomery and D.E. Winget, Strong limits on the DFSZ axion mass with G117-B15A, Astrophys. J. 675 (2008) 1512 [arXiv:0711.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  222. [222]
    J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Axions and the cooling of white dwarf stars, Astrophys. J. 682 (2008) L109 [arXiv:0806.2807] [INSPIRE].ADSCrossRefGoogle Scholar
  223. [223]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].ADSCrossRefGoogle Scholar
  224. [224]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  225. [225]
    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, arXiv:1306.2144 [INSPIRE].
  226. [226]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  227. [227]
    L. Visinelli and S. Vagnozzi, Cosmological window onto the string axiverse and the supersymmetry breaking scale, arXiv:1809.06382 [INSPIRE].
  228. [228]
    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  229. [229]
    H. Jeffreys, The theory of probability, Oxford Classic Texts in the Physical Sciences. Oxford University Press, Oxford U.K. (1939).Google Scholar
  230. [230]
    R.E. Kass and A.E. Raftery, Bayes factors, J. Amer. Stat. Ass. 90 (1995) 773.MathSciNetzbMATHCrossRefGoogle Scholar
  231. [231]
    J.O. Berger et al., Objective Bayesian methods for model selection: introduction and comparison, Lecture Notes-Monograph Series 38 (2001) 135.MathSciNetCrossRefGoogle Scholar
  232. [232]
    J. Meija et al., Atomic weights of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2015) 265.Google Scholar
  233. [233]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics, Imperial College London, Blackett LaboratoryLondonU.K.
  2. 2.Institute for Theoretical Particle Physics and Cosmology (TTK)RWTH Aachen UniversityAachenGermany
  3. 3.GRAPPA, Institute of PhysicsUniversity of AmsterdamAmsterdamNetherlands
  4. 4.Department of PhysicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations