Conformal vector dark matter and strongly first-order electroweak phase transition

  • Seyed Yaser Ayazi
  • Ahmad MohamadnejadEmail author
Open Access
Regular Article - Theoretical Physics


We study a conformal version of the Standard Model (SM), which apart from SM sector, containing a UD(1) dark sector with a vector dark matter candidate and a scalar field (scalon). In this model the dark sector couples to the SM sector via a Higgs portal. The theory is scale-invariant in lowest order, therefore the spontaneous symmetry breaking of scale invariance entails the existence of a scalar particle, scalon, with vanishing zeroth-order mass. However, one-loop corrections break scale invariance, so they give mass to the scalon. Because of the scale invariance, our model is subjected to constraints which remove many of the free parameters. We put constraints to the two remaining parameters from the Higgs searches at the LHC, dark matter relic density and dark matter direct detection limits by PandaX-II. The viable mass region for dark matter is about 1–2 TeV. We also obtain the finite temperature one-loop effective potential of the model and demonstrate that finite temperature effects, for the parameter space constrained by dark matter relic density, induce a strongly first-order electroweak phase transition.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  2. [2]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector, JHEP 09 (2018) 050 [arXiv:1805.01649] [INSPIRE].
  4. [4]
    CMS collaboration, Search for supersymmetry in events with a photon, a lepton and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2019) 154 [arXiv:1812.04066] [INSPIRE].
  5. [5]
    R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Espinosa and M. Quirós, Novel Effects in Electroweak Breaking from a Hidden Sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
  7. [7]
    D. Chway, T.H. Jung, H.D. Kim and R. Dermisek, Radiative Electroweak Symmetry Breaking Model Perturbative All the Way to the Planck Scale, Phys. Rev. Lett. 113 (2014) 051801 [arXiv:1308.0891] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with Veltman Conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].
  10. [10]
    C. Tamarit, Higgs vacua with potential barriers, Phys. Rev. D 90 (2014) 055024 [arXiv:1404.7673] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale: In view of the hierarchy problem, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
  15. [15]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Abel and A. Mariotti, Novel Higgs Potentials from Gauge Mediation of Exact Scale Breaking, Phys. Rev. D 89 (2014) 125018 [arXiv:1312.5335] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Das, N. Okada and N. Papapietro, Electroweak vacuum stability in classically conformal B-L extension of the Standard Model, Eur. Phys. J. C 77 (2017) 122 [arXiv:1509.01466] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Hashino, S. Kanemura and Y. Orikasa, Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking, Phys. Lett. B 752 (2016) 217 [arXiv:1508.03245] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Kubo and M. Yamada, Scale genesis and gravitational wave in a classically scale invariant extension of the standard model, JCAP 12 (2016) 001 [arXiv:1610.02241] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    K. Kannike, M. Raidal, C. Spethmann and H. Veermäe, The evolving Planck mass in classically scale-invariant theories, JHEP 04 (2017) 026 [arXiv:1610.06571] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  21. [21]
    D.M. Ghilencea, Z. Lalak and P. Olszewski, Standard Model with spontaneously broken quantum scale invariance, Phys. Rev. D 96 (2017) 055034 [arXiv:1612.09120] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    A. Das, S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1)’ extended standard model, electroweak vacuum stability and LHC Run-2 bounds, Phys. Rev. D 93 (2016) 115038 [arXiv:1605.01157] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. ArunaSalam, A. Kobakhidze, C. Lagger, S. Liang and A. Zhou, Low temperature electroweak phase transition in the Standard Model with hidden scale invariance, Phys. Lett. B 776 (2018) 48 [arXiv:1709.10322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Marzola, A. Racioppi and V. Vaskonen, Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model, Eur. Phys. J. C 77 (2017) 484 [arXiv:1704.01034] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L. Chataignier, T. Prokopec, M.G. Schmidt and B. Swieżewska, Systematic analysis of radiative symmetry breaking in models with extended scalar sector, JHEP 08 (2018) 083 [arXiv:1805.09292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    F. Loebbert, J. Miczajka and J. Plefka, Consistent Conformal Extensions of the Standard Model, Phys. Rev. D 99 (2019) 015026 [arXiv:1805.09727] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  28. [28]
    I. Masina and M. Quirós, On the Veltman Condition, the Hierarchy Problem and High-Scale Supersymmetry, Phys. Rev. D 88 (2013) 093003 [arXiv:1308.1242] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Guo and Z. Kang, Higgs Naturalness and Dark Matter Stability by Scale Invariance, Nucl. Phys. B 898 (2015) 415 [arXiv:1401.5609] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].
  31. [31]
    R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K. Ishiwata, Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, Phys. Lett. B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K. Endo and K. Ishiwata, Direct detection of singlet dark matter in classically scale-invariant standard model, Phys. Lett. B 749 (2015) 583 [arXiv:1507.01739] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z.-W. Wang, T.G. Steele, T. Hanif and R.B. Mann, Conformal Complex Singlet Extension of the Standard Model: Scenario for Dark Matter and a Second Higgs Boson, JHEP 08 (2016) 065 [arXiv:1510.04321] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Ghorbani and H. Ghorbani, Scalar Dark Matter in Scale Invariant Standard Model, JHEP 04 (2016) 024 [arXiv:1511.08432] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A.D. Plascencia, Classical scale invariance in the inert doublet model, JHEP 09 (2015) 026 [arXiv:1507.04996] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    A.J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector, JHEP 07 (2017) 113 [arXiv:1603.03603] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    S. Benic and B. Radovcic, Electroweak breaking and Dark Matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    W. Altmannshofer, W.A. Bardeen, M. Bauer, M. Carena and J.D. Lykken, Light Dark Matter, Naturalness and the Radiative Origin of the Electroweak Scale, JHEP 01 (2015) 032 [arXiv:1408.3429] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 01 (2015) 143 [arXiv:1409.5776] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Ahriche, K.L. McDonald and S. Nasri, A Radiative Model for the Weak Scale and Neutrino Mass via Dark Matter, JHEP 02 (2016) 038 [arXiv:1508.02607] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Ahriche, A. Manning, K.L. McDonald and S. Nasri, Scale-Invariant Models with One-Loop Neutrino Mass and Dark Matter Candidates, Phys. Rev. D 94 (2016) 053005 [arXiv:1604.05995] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Oda, N. Okada and D.-s. Takahashi, Right-handed neutrino dark matter in the classically conformal U(1)’ extended standard model, Phys. Rev. D 96 (2017) 095032 [arXiv:1704.05023] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Yaser Ayazi and A. Mohamadnejad, Scale-Invariant Two Component Dark Matter, Eur. Phys. J. C 79 (2019) 140 [arXiv:1808.08706] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  48. [48]
    V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3)X, Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].ADSGoogle Scholar
  51. [51]
    V.V. Khoze and A.D. Plascencia, Dark Matter and Leptogenesis Linked by Classical Scale Invariance, JHEP 11 (2016) 025 [arXiv:1605.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, arXiv:1809.01198 [INSPIRE].
  53. [53]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.L. Diaz-Cruz and E. Ma, Neutral SU(2) Gauge Extension of the Standard Model and a Vector-Boson Dark-Matter Candidate, Phys. Lett. B 695 (2011) 264 [arXiv:1007.2631] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: II. scalar, vector and spin-3/2 dark matter, Nucl. Phys. B 860 (2012) 115 [arXiv:1112.6052] [INSPIRE].
  57. [57]
    Y. Farzan and A.R. Akbarieh, VDM: A model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    H. Davoudiasl and I.M. Lewis, Dark Matter from Hidden Forces, Phys. Rev. D 89 (2014) 055026 [arXiv:1309.6640] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Fraser, E. Ma and M. Zakeri, SU(2)N model of vector dark matter with a leptonic connection, Int. J. Mod. Phys. A 30 (2015) 1550018 [arXiv:1409.1162] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Di Chiara and K. Tuominen, A minimal model for SU(N) vector dark matter, JHEP 11 (2015) 188 [arXiv:1506.03285] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. DiFranzo, P.J. Fox and T.M.P. Tait, Vector Dark Matter through a Radiative Higgs Portal, JHEP 04 (2016) 135 [arXiv:1512.06853] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Perturbations of ultralight vector field dark matter, JHEP 02 (2017) 064 [arXiv:1611.03793] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Duch, B. Grzadkowski and D. Huang, Strongly self-interacting vector dark matter via freeze-in, JHEP 01 (2018) 020 [arXiv:1710.00320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  68. [68]
    A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    N. Maru, N. Okada and S. Okada, SU(2)L doublet vector dark matter from gauge-Higgs unification, Phys. Rev. D 98 (2018) 075021 [arXiv:1803.01274] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Chakraborti, A. Dutta Banik and R. Islam, Probing Multicomponent Extension of Inert Doublet Model with a Vector Dark Matter, arXiv:1810.05595 [INSPIRE].
  71. [71]
    A. Belyaev, G. Cacciapaglia, J. McKay, D. Marin and A.R. Zerwekh, Minimal Spin-one Isotriplet Dark Matter, arXiv:1808.10464 [INSPIRE].
  72. [72]
    B. Díaz Sáez, F. Rojas-Abatte and A.R. Zerwekh, Dark Matter from a Vector Field in the Fundamental Representation of SU(2)L, arXiv:1810.06375 [INSPIRE].
  73. [73]
    J. Hisano, K. Ishiwata, N. Nagata and M. Yamanaka, Direct Detection of Vector Dark Matter, Prog. Theor. Phys. 126 (2011) 435 [arXiv:1012.5455] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    S. Baek, P. Ko, W.-I. Park and Y. Tang, Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays, JCAP 06 (2014) 046 [arXiv:1402.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.-H. Yu, Vector Fermion-Portal Dark Matter: Direct Detection and Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 095010 [arXiv:1409.3227] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C.-R. Chen, Y.-K. Chu and H.-C. Tsai, An Elusive Vector Dark Matter, Phys. Lett. B 741 (2015) 205 [arXiv:1410.0918] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Q. Yang and H. Di, Vector Dark Matter Detection using the Quantum Jump of Atoms, Phys. Lett. B 780 (2018) 622 [arXiv:1606.01492] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    C.-R. Chen and M.-J. Li, New LUX result constrains exotic quark mediators with the vector dark matter, Int. J. Mod. Phys. A 31 (2016) 1650200 [arXiv:1609.07583] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  79. [79]
    R. Catena, K. Fridell and V. Zema, Direct detection of fermionic and vector dark matter with polarised targets, JCAP 11 (2018) 018 [arXiv:1810.01515] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Yepes, Top partners tackling vector dark matter, arXiv:1811.06059 [INSPIRE].
  81. [81]
    C. Arina, T. Hambye, A. Ibarra and C. Weniger, Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay, JCAP 03 (2010) 024 [arXiv:0912.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Farzan and A.R. Akbarieh, Natural explanation for 130 GeV photon line within vector boson dark matter model, Phys. Lett. B 724 (2013) 84 [arXiv:1211.4685] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    K.-Y. Choi, H.M. Lee and O. Seto, Vector Higgs-portal dark matter and Fermi-LAT gamma ray line, Phys. Rev. D 87 (2013) 123541 [arXiv:1304.0966] [INSPIRE].ADSGoogle Scholar
  84. [84]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    Y. Farzan and A.R. Akbarieh, Decaying Vector Dark Matter as an Explanation for the 3.5 keV Line from Galaxy Clusters, JCAP 11 (2014) 015 [arXiv:1408.2950] [INSPIRE].
  86. [86]
    G. Bambhaniya, J. Kumar, D. Marfatia, A.C. Nayak and G. Tomar, Vector dark matter annihilation with internal bremsstrahlung, Phys. Lett. B 766 (2017) 177 [arXiv:1609.05369] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    C.-H. Chen, C.-W. Chiang and T. Nomura, Explaining the DAMPE e + e excess using the Higgs triplet model with a vector dark matter, Phys. Rev. D 97 (2018) 061302 [arXiv:1712.00793] [INSPIRE].ADSGoogle Scholar
  88. [88]
    K.-C. Yang, Hidden Higgs portal vector dark matter for the Galactic center gamma-ray excess from the two-step cascade annihilation and muon g − 2, JHEP 08 (2018) 099 [arXiv:1806.05663] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    M. Duch, B. Grzadkowski and M. McGarrie, A stable Higgs portal with vector dark matter, JHEP 09 (2015) 162 [arXiv:1506.08805] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    C.-H. Chen and T. Nomura, Searching for vector dark matter via Higgs portal at the LHC, Phys. Rev. D 93 (2016) 074019 [arXiv:1507.00886] [INSPIRE].ADSGoogle Scholar
  92. [92]
    J. Kumar, D. Marfatia and D. Yaylali, Vector dark matter at the LHC, Phys. Rev. D 92 (2015) 095027 [arXiv:1508.04466] [INSPIRE].ADSGoogle Scholar
  93. [93]
    B. Barman, S. Bhattacharya, S.K. Patra and J. Chakrabortty, Non-Abelian Vector Boson Dark Matter, its Unified Route and signatures at the LHC, JCAP 12 (2017) 021 [arXiv:1704.04945] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  95. [95]
    A. Farzinnia and J. Ren, Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector, Phys. Rev. D 90 (2014) 015019 [arXiv:1405.0498] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61]. [INSPIRE].
  97. [97]
    M.E. Carrington, The effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].ADSGoogle Scholar
  98. [98]
    G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].ADSGoogle Scholar
  99. [99]
    P.B. Arnold, Phase transition temperatures at next-to-leading order, Phys. Rev. D 46 (1992) 2628 [hep-ph/9204228] [INSPIRE].
  100. [100]
    P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].
  101. [101]
    M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].
  102. [102]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  103. [103]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  104. [104]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and N. Tetradis, Electroweak phase transition and dark matter abundance, Phys. Lett. B 247 (1990) 601 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    D.J.H. Chung and A.J. Long, Cosmological Constant, Dark Matter and Electroweak Phase Transition, Phys. Rev. D 84 (2011) 103513 [arXiv:1108.5193] [INSPIRE].ADSGoogle Scholar
  106. [106]
    M. Carena, N.R. Shah and C.E.M. Wagner, Light Dark Matter and the Electroweak Phase Transition in the NMSSM, Phys. Rev. D 85 (2012) 036003 [arXiv:1110.4378] [INSPIRE].ADSGoogle Scholar
  107. [107]
    T.A. Chowdhury, M. Nemevšek, G. Senjanović and Y. Zhang, Dark Matter as the Trigger of Strong Electroweak Phase Transition, JCAP 02 (2012) 029 [arXiv:1110.5334] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    A. Ahriche and S. Nasri, Light Dark Matter, Light Higgs and the Electroweak Phase Transition, Phys. Rev. D 85 (2012) 093007 [arXiv:1201.4614] [INSPIRE].ADSGoogle Scholar
  109. [109]
    D. Borah and J.M. Cline, Inert Doublet Dark Matter with Strong Electroweak Phase Transition, Phys. Rev. D 86 (2012) 055001 [arXiv:1204.4722] [INSPIRE].ADSGoogle Scholar
  110. [110]
    G. Gil, P. Chankowski and M. Krawczyk, Inert Dark Matter and Strong Electroweak Phase Transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    A. Falkowski and J.M. No, Non-thermal Dark Matter Production from the Electroweak Phase Transition: Multi-TeV WIMPs andBaby-Zillas’, JHEP 02 (2013) 034 [arXiv:1211.5615] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    J.M. Cline and K. Kainulainen, Improved Electroweak Phase Transition with Subdominant Inert Doublet Dark Matter, Phys. Rev. D 87 (2013) 071701 [arXiv:1302.2614] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Ahriche and S. Nasri, Dark matter and strong electroweak phase transition in a radiative neutrino mass model, JCAP 07 (2013) 035 [arXiv:1304.2055] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    M. Fairbairn and R. Hogan, Singlet Fermionic Dark Matter and the Electroweak Phase Transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    S.S. AbdusSalam and T.A. Chowdhury, Scalar Representations in the Light of Electroweak Phase Transition and Cold Dark Matter Phenomenology, JCAP 05 (2014) 026 [arXiv:1310.8152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  116. [116]
    T.A. Chowdhury, A Possible Link between the Electroweak Phase Transition and the Dark Matter of the Universe, Ph.D. Thesis, SISSA, Trieste, Italy, (2014).Google Scholar
  117. [117]
    W. Chao, First order electroweak phase transition triggered by the Higgs portal vector dark matter, Phys. Rev. D 92 (2015) 015025 [arXiv:1412.3823] [INSPIRE].ADSGoogle Scholar
  118. [118]
    W. Chao, H.-K. Guo and J. Shu, Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter, JCAP 09 (2017) 009 [arXiv:1702.02698] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    P.-H. Gu, Cosmic matter from dark electroweak phase transition with neutrino mass generation, Phys. Rev. D 96 (2017) 055038 [arXiv:1705.05189] [INSPIRE].ADSGoogle Scholar
  120. [120]
    X. Liu and L. Bian, Dark matter and electroweak phase transition in the mixed scalar dark matter model, Phys. Rev. D 97 (2018) 055028 [arXiv:1706.06042] [INSPIRE].ADSGoogle Scholar
  121. [121]
    P.H. Ghorbani, Electroweak phase transition in the scale invariant standard model, Phys. Rev. D 98 (2018) 115016 [arXiv:1711.11541] [INSPIRE].ADSGoogle Scholar
  122. [122]
    V.R. Shajiee and A. Tofighi, Electroweak Phase Transition, Gravitational Waves and Dark Matter in Two Scalar Singlet Extension of The Standard Model, arXiv:1811.09807 [INSPIRE].
  123. [123]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  124. [124]
    WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  125. [125]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  126. [126]
    E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].ADSGoogle Scholar
  127. [127]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  128. [128]
    A. Semenov, LanHEPA package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [arXiv:1412.5016] [INSPIRE].
  129. [129]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  130. [130]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  131. [131]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  132. [132]
    B. Cabrera, L.M. Krauss and F. Wilczek, Bolometric Detection of Neutrinos, Phys. Rev. Lett. 55 (1985) 25 [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    J. Monroe and P. Fisher, Neutrino Backgrounds to Dark Matter Searches, Phys. Rev. D 76 (2007) 033007 [arXiv:0706.3019] [INSPIRE].ADSGoogle Scholar
  134. [134]
    L.E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J. Phys. 11 (2009) 105011 [arXiv:0903.3630] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    A. Gutlein et al., Solar and atmospheric neutrinos: Background sources for the direct dark matter search, Astropart. Phys. 34 (2010) 90 [arXiv:1003.5530] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν Signals in Dark Matter Detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].ADSGoogle Scholar
  138. [138]
    J.H. Davis, Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor, JCAP 03 (2015) 012 [arXiv:1412.1475] [INSPIRE].
  139. [139]
    B. Dutta, R. Mahapatra, L.E. Strigari and J.W. Walker, Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering, Phys. Rev. D 93 (2016) 013015 [arXiv:1508.07981] [INSPIRE].ADSGoogle Scholar
  140. [140]
    J.B. Dent, B. Dutta, J.L. Newstead and L.E. Strigari, Effective field theory treatment of the neutrino background in direct dark matter detection experiments, Phys. Rev. D 93 (2016) 075018 [arXiv:1602.05300] [INSPIRE].ADSGoogle Scholar
  141. [141]
    K.C.Y. Ng, J.F. Beacom, A.H.G. Peter and C. Rott, Solar Atmospheric Neutrinos: A New Neutrino Floor for Dark Matter Searches, Phys. Rev. D 96 (2017) 103006 [arXiv:1703.10280] [INSPIRE].ADSGoogle Scholar
  142. [142]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  143. [143]
    LUX and LZ collaborations, The Present and Future of Searching for Dark Matter with LUX and LZ, PoS(ICHEP2016)220 (2016) [arXiv:1611.05525] [INSPIRE].
  144. [144]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  145. [145]
    A. De Simone, G. Nardini, M. Quirós and A. Riotto, Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis, JCAP 10 (2011) 030 [arXiv:1107.4317] [INSPIRE].CrossRefGoogle Scholar
  146. [146]
    M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    M.E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett. 44 (1986) 465 [INSPIRE].ADSGoogle Scholar
  148. [148]
    L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].ADSGoogle Scholar
  149. [149]
    J. Conrad, Indirect Detection of WIMP Dark Matter: a compact review, in Interplay between Particle and Astroparticle physics (IPA2014) London, United Kingdom, August 18–22, 2014, 2014, arXiv:1411.1925 [INSPIRE].
  150. [150]
    DAMPE collaboration, Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552 (2017) 63 [arXiv:1711.10981] [INSPIRE].
  151. [151]
    P. Athron, C. Balázs, A. Fowlie and Y. Zhang, Model-independent analysis of the DAMPE excess, JHEP 02 (2018) 121 [arXiv:1711.11376] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    A. Fowlie, DAMPE squib? Significance of the 1.4 TeV DAMPE excess, Phys. Lett. B 780 (2018) 181 [arXiv:1712.05089] [INSPIRE].
  153. [153]
    Q. Yuan et al., Interpretations of the DAMPE electron data, arXiv:1711.10989 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentSemnan UniversitySemnanIran
  2. 2.Young Researchers and Elite Club, Islamshahr BranchIslamic Azad UniversityIslamshahrIran

Personalised recommendations