Advertisement

Symmetries of M-theory and free Lie superalgebras

  • Joaquim Gomis
  • Axel KleinschmidtEmail author
  • Jakob Palmkvist
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

We study systematically various extensions of the Poincaré superalgebra. The most general structure starting from a set of spinorial supercharges Qα is a free Lie superalgebra that we discuss in detail. We explain how this universal extension of the Poincaré superalgebra gives rise to many other algebras as quotients, some of which have appeared previously in various places in the literature. In particular, we show how some quotients can be very neatly related to Borcherds superalgebras. The ideas put forward also offer some new angles on exotic branes and extended symmetry structures in M-theory.

Keywords

Global Symmetries M-Theory Space-Time Symmetries Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Bacry, P. Combe and J.L. Richard, Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. the relativistic particle in a constant and uniform field, Nuovo Cim. A 67 (1970) 267 [INSPIRE].
  2. [2]
    H. Bacry, P. Combe and J.L. Richard, Group-theoretical analysis of elementary particles in an external electromagnetic field. 2. the nonrelativistic particle in a constant and uniform field, Nuovo Cim. A 70 (1970) 289 [INSPIRE].
  3. [3]
    R. Schrader, The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields, Fortsch. Phys. 20 (1972) 701 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Beckers and V. Hussin, Minimal electromagnetic coupling schemes. II. Relativistic and nonrelativistic Maxwell Groups, J. Math. Phys. 24 (1983) 1295 [INSPIRE].
  5. [5]
    D.V. Soroka and V.A. Soroka, Tensor extension of the Poincaré algebra, Phys. Lett. B 607 (2005) 302 [hep-th/0410012] [INSPIRE].
  6. [6]
    S. Bonanos and J. Gomis, Infinite Sequence of Poincaré Group Extensions: Structure and Dynamics, J. Phys. A 43 (2010) 015201 [arXiv:0812.4140] [INSPIRE].
  7. [7]
    J. Gomis and A. Kleinschmidt, On free Lie algebras and particles in electro-magnetic fields, JHEP 07 (2017) 085 [arXiv:1705.05854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J.W. van Holten and A. Van Proeyen, N = 1 Supersymmetry Algebras in D = 2, D = 3, D=4 MOD-8, J. Phys. A 15 (1982) 3763 [INSPIRE].
  9. [9]
    P.K. Townsend, P-brane democracy, in The World in eleven-dimensions: A Tribute to Oskar Klein, M.J. Duff eds., CRC Press, Boca Raton U.S.A. (1995), pg. 375 [hep-th/9507048] [INSPIRE].
  10. [10]
    E. Sezgin, The M algebra, Phys. Lett. B 392 (1997) 323 [hep-th/9609086] [INSPIRE].
  11. [11]
    S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Maxwell Superalgebra and Superparticle in Constant Gauge Badkgrounds, Phys. Rev. Lett. 104 (2010) 090401 [arXiv:0911.5072] [INSPIRE].
  12. [12]
    K. Kamimura and J. Lukierski, Supersymmetrization Schemes of D = 4 Maxwell Algebra, Phys. Lett. B 707 (2012) 292 [arXiv:1111.3598] [INSPIRE].
  13. [13]
    M.B. Green, Supertranslations, Superstrings and Chern-Simons Forms, Phys. Lett. B 223 (1989) 157 [INSPIRE].
  14. [14]
    V.G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge U.K. (1990).Google Scholar
  15. [15]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
  16. [16]
    T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].
  17. [17]
    R.E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 155 (1988) 501.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Henneaux, B.L. Julia and J. Levie, E 11 , Borcherds algebras and maximal supergravity, JHEP 04 (2012) 078 [arXiv:1007.5241] [INSPIRE].
  19. [19]
    J. Palmkvist, Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras, JHEP 06 (2012) 003 [arXiv:1203.5107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Palmkvist, Tensor hierarchies, Borcherds algebras and E 11, JHEP 02 (2012) 066 [arXiv:1110.4892] [INSPIRE].
  21. [21]
    J. Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55 (2014) 011701 [arXiv:1305.0018] [INSPIRE].
  22. [22]
    J. Greitz, P. Howe and J. Palmkvist, The tensor hierarchy simplified, Class. Quant. Grav. 31 (2014) 087001 [arXiv:1308.4972] [INSPIRE].
  23. [23]
    G. Bossard, A. Kleinschmidt, J. Palmkvist, C.N. Pope and E. Sezgin, Beyond E 11, JHEP 05 (2017) 020 [arXiv:1703.01305] [INSPIRE].
  24. [24]
    A.G. Cohen and S.L. Glashow, Very special relativity, Phys. Rev. Lett. 97 (2006) 021601 [hep-ph/0601236] [INSPIRE].
  25. [25]
    G.W. Gibbons, J. Gomis and C.N. Pope, Deforming the Maxwell-Sim Algebra, Phys. Rev. D 82 (2010) 065002 [arXiv:0910.3220] [INSPIRE].
  26. [26]
    M. Cederwall and J. Palmkvist, Superalgebras, constraints and partition functions, JHEP 08 (2015) 036 [arXiv:1503.06215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. 177 (1937) 152.MathSciNetzbMATHGoogle Scholar
  28. [28]
    P. Salgado, R.J. Szabo and O. Valdivia, Topological gravity and transgression holography, Phys. Rev. D 89 (2014) 084077 [arXiv:1401.3653] [INSPIRE].
  29. [29]
    P. Salgado and S. Salgado, \( \mathfrak{so}\left(D-1,1\right)\otimes \mathfrak{so}\left(D-1,2\right) \) algebras and gravity, Phys. Lett. B 728 (2014) 5 [INSPIRE].
  30. [30]
    S. Hoseinzadeh and A. Rezaei-Aghdam, (2 + 1)-dimensional gravity from Maxwell and semisimple extension of the Poincaré gauge symmetric models, Phys. Rev. D 90 (2014) 084008 [arXiv:1402.0320] [INSPIRE].
  31. [31]
    R. Caroca, P. Concha, O. Fierro, E. Rodríguez and P. Salgado-Rebolledó, Generalized Chern-Simons higher-spin gravity theories in three dimensions, Nucl. Phys. B 934 (2018) 240 [arXiv:1712.09975] [INSPIRE].
  32. [32]
    P. Concha, D.M. Peñafiel and E. Rodríguez, On the Maxwell supergravity and flat limit in 2+1 dimensions, Phys. Lett. B 785 (2018) 247 [arXiv:1807.00194] [INSPIRE].
  33. [33]
    L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP 05 (2018) 047 [arXiv:1802.08453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.A. de Azcarraga, K. Kamimura and J. Lukierski, Generalized cosmological term from Maxwell symmetries, Phys. Rev. D 83 (2011) 124036 [arXiv:1012.4402] [INSPIRE].
  35. [35]
    M.A.A. van Leeuwen, A.M. Cohen and B. Lisser, LiE, A Package for Lie Group Computations, available from http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/.
  36. [36]
    A. Achucarro, J.P. Gauntlett, K. Itoh and P.K. Townsend, World Volume Supersymmetry From Space-time Supersymmetry of the Four-dimensional Supermembrane, Nucl. Phys. B 314 (1989) 129 [INSPIRE].
  37. [37]
    S. Ferrara and M. Porrati, Central extensions of supersymmetry in four-dimensions and three-dimensions, Phys. Lett. B 423 (1998) 255 [hep-th/9711116] [INSPIRE].
  38. [38]
    C. Chryssomalakos, J.A. de Azcarraga, J.M. Izquierdo and J.C. Perez Bueno, The Geometry of branes and extended superspaces, Nucl. Phys. B 567 (2000) 293 [hep-th/9904137] [INSPIRE].
  39. [39]
    E. Bergshoeff and E. Sezgin, New Space-time Superalgebras and Their Kac-Moody Extension, Phys. Lett. B 232 (1989) 96 [INSPIRE].
  40. [40]
    E. Bergshoeff and E. Sezgin, Super p-brane theories and new space-time superalgebras, Phys. Lett. B 354 (1995) 256 [hep-th/9504140] [INSPIRE].
  41. [41]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].
  42. [42]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].
  43. [43]
    J.A. de Azcarraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Topological Extensions of the Supersymmetry Algebra for Extended Objects, Phys. Rev. Lett. 63 (1989) 2443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P.K. Townsend, M theory from its superalgebra, NATO Sci. Ser. C 520 (1999) 141 [hep-th/9712004] [INSPIRE].
  45. [45]
    D.M. Peñafiel and L. Ravera, On the Hidden Maxwell Superalgebra underlying D = 4 Supergravity, Fortsch. Phys. 65 (2017) 1700005 [arXiv:1701.04234] [INSPIRE].
  46. [46]
    L. Ravera, Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity, Eur. Phys. J. C 78 (2018) 211 [arXiv:1801.08860] [INSPIRE].
  47. [47]
    L. Andrianopoli, R. D’Auria and L. Ravera, Hidden Gauge Structure of Supersymmetric Free Differential Algebras, JHEP 08 (2016) 095 [arXiv:1606.07328] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    L. Andrianopoli, R. D’Auria and L. Ravera, More on the Hidden Symmetries of 11D Supergravity, Phys. Lett. B 772 (2017) 578 [arXiv:1705.06251] [INSPIRE].
  49. [49]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].
  50. [50]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    B. de Wit and H. Nicolai, Hidden symmetries, central charges and all that, Class. Quant. Grav. 18 (2001) 3095 [hep-th/0011239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    E.A. Bergshoeff, F. Riccioni and L. Romano, Branes, Weights and Central Charges, JHEP 06 (2013) 019 [arXiv:1303.0221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. Henneaux, A. Kleinschmidt and H. Nicolai, Real forms of extended Kac-Moody symmetries and higher spin gauge theories, Gen. Rel. Grav. 44 (2012) 1787 [arXiv:1110.4460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) ×  + generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  63. [63]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Kleinschmidt, E 11 as E 10 representation at low levels, Nucl. Phys. B 677 (2004) 553 [hep-th/0304246] [INSPIRE].
  65. [65]
    A. Kleinschmidt and J. Palmkvist, Oxidizing Borcherds symmetries, JHEP 03 (2013) 044 [arXiv:1301.1346] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR Izv. 2 (1968) 1271.Google Scholar
  67. [67]
    V.G. Kac, Lie Superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].CrossRefzbMATHGoogle Scholar
  68. [68]
    V.K. Dobrev and V.B. Petkova, Group Theoretical Approach to Extended Conformal Supersymmetry: Function Space Realizations and Invariant Differential Operators, Fortsch. Phys. 35 (1987) 537 [INSPIRE].
  69. [69]
    U. Ray, Automorphic forms and Lie superalgebras, Springer, Berlin Germany (2006).Google Scholar
  70. [70]
    P. Howe and J. Palmkvist, Forms and algebras in (half-)maximal supergravity theories, JHEP 05 (2015) 032 [arXiv:1503.00015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].
  72. [72]
    L. Frappat and A. Sciarrino and P. Sorba, Dictionary on Lie algebras and Lie superalgebras, Academic Press, New York U.S.A. (2000).Google Scholar
  73. [73]
    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].
  74. [74]
    A. Kleinschmidt and H. Nicolai, IIA and IIB spinors from K(E 10), Phys. Lett. B 637 (2006) 107 [hep-th/0603205] [INSPIRE].
  75. [75]
    T. Damour, A. Kleinschmidt and H. Nicolai, K(E 10), Supergravity and Fermions, JHEP 08 (2006) 046 [hep-th/0606105] [INSPIRE].
  76. [76]
    R. Casalbuoni, J. Gomis, K. Kamimura and G. Longhi, Space-time Vector Supersymmetry and Massive Spinning Particle, JHEP 02 (2008) 094 [arXiv:0801.2702] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    A. Barducci, R. Casalbuoni and J. Gomis, Confined dynamical systems with Carroll and Galilei symmetries, Phys. Rev. D 98 (2018) 085018 [arXiv:1804.10495] [INSPIRE].
  78. [78]
    A.B. Borisov and V.I. Ogievetsky, Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory, Theor. Math. Phys. 21 (1975) 1179 [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    F. Riccioni and P. West, Local E 11, JHEP 04 (2009) 051 [arXiv:0902.4678] [INSPIRE].
  80. [80]
    N. Boulanger, P. Sundell and P. West, Gauge fields and infinite chains of dualities, JHEP 09 (2015) 192 [arXiv:1502.07909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].
  82. [82]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Joaquim Gomis
    • 1
  • Axel Kleinschmidt
    • 2
    • 3
    Email author
  • Jakob Palmkvist
    • 4
  1. 1.Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB)Universitat de BarcelonaBarcelonaSpain
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  3. 3.International Solvay InstitutesBrusselsBelgium
  4. 4.Division for Theoretical Physics, Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations