The infrared structure of exceptional scalar theories

  • Zhewei YinEmail author
Open Access
Regular Article - Theoretical Physics


Exceptional theories are a group of one-parameter scalar field theories with (enhanced) vanishing soft limits in the S-matrix elements. They include the nonlinear sigma model (NLSM), Dirac-Born-Infeld scalars and the special Galileon theory. The soft behavior results from the shift symmetry underlying these theories, which leads to Ward identities generating subleading single soft theorems as well as novel Berends-Giele recursion relations. Such an approach was first applied to NLSM in refs. [1, 2], and here we use it to systematically study other exceptional scalar field theories. In particular, using the subleading single soft theorem for the special Galileon we identify the Feynman vertices of the corresponding extended theory, which was first discovered using the Cachazo-He-Yuan representation of scattering amplitudes. Furthermore, we present a Lagrangian for the extended theory of the special Galileon, which has a rich particle content involving biadjoint scalars, Nambu-Goldstone bosons and Galileons, as well as additional flavor structure.


Effective Field Theories Scattering Amplitudes Global Symmetries Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I. Low and Z. Yin, Ward identity and scattering amplitudes for nonlinear σ-models, Phys. Rev. Lett. 120 (2018) 061601 [arXiv:1709.08639] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I. Low and Z. Yin, The infrared structure of Nambu-Goldstone bosons, JHEP 10 (2018) 078 [arXiv:1804.08629] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].
  4. [4]
    M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].
  7. [7]
    S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Jackiw, Low-energy theorems for massless bosons: photons and gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].
  11. [11]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.B. Treiman, E. Witten, R. Jackiw and B. Zumino, Current algebra and anomalies, World Scientific, Singapore (1986).CrossRefzbMATHGoogle Scholar
  13. [13]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  18. [18]
    E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  20. [20]
    Y. Hamada and G. Shiu, Infinite set of soft theorems in gauge-gravity theories as Ward-Takahashi identities, Phys. Rev. Lett. 120 (2018) 201601 [arXiv:1801.05528] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R.F. Dashen and M. WEinstein, Soft pions, chiral symmetry and phenomenological lagrangians, Phys. Rev. 183 (1969) 1261 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Weinberg, Current-commutator theory of multiple pion production, Phys. Rev. Lett. 16 (1966) 879.Google Scholar
  23. [23]
    S. Weinberg, Summing soft pions, Phys. Rev. D 2 (1970) 674 [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams, Phys. Rev. D 1 (1970) 1682 [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.R. Ellis, The Adler zero condition and current algebra, Nucl. Phys. B 21 (1970) 217 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Cheung et al., A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    K. Kampf, J. Novotny and J. Trnka, Recursion relations for tree-level amplitudes in the SU(N) nonlinear σ-model, Phys. Rev. D 87 (2013) 081701 [arXiv:1212.5224] [INSPIRE].ADSGoogle Scholar
  29. [29]
    K. Kampf, J. Novotny and J. Trnka, Tree-level amplitudes in the nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
  39. [39]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    Y.-J. Du and H. Lüo, On single and double soft behaviors in NLSM, JHEP 08 (2015) 058 [arXiv:1505.04411] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y.-J. Du and H. Lüo, Leading order multi-soft behaviors of tree amplitudes in NLSM, JHEP 03 (2017) 062 [arXiv:1611.07479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    I. Low, Double soft theorems and shift symmetry in nonlinear σ-models, Phys. Rev. D 93 (2016) 045032 [arXiv:1512.01232] [INSPIRE].
  43. [43]
    I. Low, Adlers zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    I. Low, Minimally symmetric Higgs boson, Phys. Rev. D 91 (2015) 116005 [arXiv:1412.2146] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (2013).Google Scholar
  46. [46]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  47. [47]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  48. [48]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  52. [52]
    T. Brauner and H. Watanabe, Spontaneous breaking of spacetime symmetries and the inverse Higgs effect, Phys. Rev. D 89 (2014) 085004 [arXiv:1401.5596] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Fasiello and A.J. Tolley, Cosmological stability bound in massive gravity and bigravity, JCAP 12 (2013) 002 [arXiv:1308.1647] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    C. de Rham, M. Fasiello and A.J. Tolley, Galileon duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    K. Kampf and J. Novotny, Unification of galileon dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-abelian Z-theory: NLSM + ϕ 3 from the open string, JHEP 08 (2017) 135 [arXiv:1612.06446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for Amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Mizera and B. Skrzypek, Perturbiner methods for effective field theories and the double copy, JHEP 10 (2018) 018 [arXiv:1809.02096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].
  61. [61]
    K. Zhou and B. Feng, Note on differential operators, CHY integrands and unifying relations for amplitudes, JHEP 09 (2018) 160 [arXiv:1808.06835] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    M. Bollmann and L. Ferro, Transmuting CHY formulae, JHEP 01 (2019) 180 [arXiv:1808.07451] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as gluons in higher dimensions, JHEP 04 (2018) 129 [arXiv:1709.04932] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Scalar field theories with polynomial shift symmetries, Commun. Math. Phys. 340 (2015) 985 [arXiv:1412.1046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95.Google Scholar
  67. [67]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft bootstrap and supersymmetry, JHEP 01 (2019) 195 [arXiv:1806.06079] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    L. Rodina, Scattering amplitudes from soft theorems and infrared behavior, Phys. Rev. Lett. 122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].
  70. [70]
    D. Liu, I. Low and Z. Yin, Universal imprints of a pseudo-Nambu-Goldstone Higgs boson, Phys. Rev. Lett. 121 (2018) 261802 [arXiv:1805.00489] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D. Liu, I. Low and Z. Yin, Universal relations in composite Higgs models, arXiv:1809.09126 [INSPIRE].
  72. [72]
    B. Finelli, G. Goon, E. Pajer and L. Santoni, The effective theory of shift-symmetric cosmologies, JCAP 05 (2018) 060 [arXiv:1802.01580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C. Deffayet and D.A. Steer, A formal introduction to Horndeski and Galileon theories and their generalizations, Class. Quant. Grav. 30 (2013) 214006 [arXiv:1307.2450] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3) × U(3), Phys. Rev. 161 (1967) 1483 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations