Advertisement

A note on three-point functions of unprotected operators

  • Marco S. BianchiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Given the recent progress in computing three-point functions in \( \mathcal{N} \) = 4 SYM via integrability, I provide here a novel direct calculation of some structure constants at weak coupling. The main focus is on correlators involving more than one unprotected operator, at two-loop order in the perturbative expansion.

Keywords

Conformal Field Theory Integrable Field Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar N = 4 SYM Theory, arXiv:1505.06745 [INSPIRE].
  3. [3]
    T. Fleury and S. Komatsu, Hexagonalization of Correlation Functions, JHEP 01 (2017) 130 [arXiv:1611.05577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in \( \mathcal{N} \) = 4 SYM, JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B. Basso, F. Coronado, S. Komatsu, H.T. Lam, P. Vieira and D.-l. Zhong, Asymptotic Four Point Functions, arXiv:1701.04462 [INSPIRE].
  6. [6]
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling Handles: Nonplanar Integrability in \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 121 (2018) 231602 [arXiv:1711.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Eden, Y. Jiang, D. le Plat and A. Sfondrini, Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP 02 (2018) 170 [arXiv:1710.10212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, BMN correlators and operator mixing in N = 4 superYang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    C.-S. Chu, V.V. Khoze and G. Travaglini, Three point functions in N = 4 Yang-Mills theory and pp waves, JHEP 06 (2002) 011 [hep-th/0206005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP 09 (2004) 032 [hep-th/0407140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Towards a string bit formulation of N = 4 super Yang-Mills, JHEP 04 (2006) 014 [hep-th/0510264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP 08 (2004) 055 [hep-th/0404190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Georgiou, V.L. Gili and R. Russo, Operator Mixing and the AdS/CFT correspondence, JHEP 01 (2009) 082 [arXiv:0810.0499] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Grossardt and J. Plefka, One-Loop Spectroscopy of Scalar Three-Point Functions in planar N = 4 super Yang-Mills Theory, arXiv:1007.2356 [INSPIRE].
  16. [16]
    G. Georgiou, V. Gili, A. Grossardt and J. Plefka, Three-point functions in planar N = 4 super Yang-Mills Theory for scalar operators up to length five at the one-loop order, JHEP 04 (2012) 038 [arXiv:1201.0992] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Plefka and K. Wiegandt, Three-Point Functions of Twist-Two Operators in N = 4 SYM at One Loop, JHEP 10 (2012) 177 [arXiv:1207.4784] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].
  20. [20]
    N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability III. Classical Tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].
  21. [21]
    N. Gromov and P. Vieira, Quantum Integrability for Three-Point Functions of Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 211601 [arXiv:1202.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Gromov and P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism, JHEP 04 (2014) 068 [arXiv:1205.5288] [INSPIRE].
  23. [23]
    P. Vieira and T. Wang, Tailoring Non-Compact Spin Chains, JHEP 10 (2014) 35 [arXiv:1311.6404] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Four point functions in N = 4 supersymmetric Yang-Mills theory at two loops, Nucl. Phys. B 557 (1999) 355 [hep-th/9811172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Simplifications of four point functions in N = 4 supersymmetric Yang-Mills theory at two loops, Phys. Lett. B 466 (1999) 20 [hep-th/9906051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP 08 (1999) 020 [hep-th/9906188] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in N = 4 SYM theory, JHEP 05 (2001) 042 [hep-th/0104016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193 [arXiv:1108.3557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point correlators of half-BPS operators in planar \( \mathcal{N} \) = 4 SYM, JHEP 08 (2016) 053 [arXiv:1512.02926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D. Chicherin, A. Georgoudis, V. Gonçalves and R. Pereira, All five-loop planar four-point functions of half-BPS operators in \( \mathcal{N} \) = 4 SYM, JHEP 11 (2018) 069 [arXiv:1809.00551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  36. [36]
    B. Eden and A. Sfondrini, Three-point functions in \( \mathcal{N} \) = 4 SYM: the hexagon proposal at three loops, JHEP 02 (2016) 165 [arXiv:1510.01242] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    B. Basso, V. Gonçalves, S. Komatsu and P. Vieira, Gluing Hexagons at Three Loops, Nucl. Phys. B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM, arXiv:1608.04222 [INSPIRE].
  39. [39]
    V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079 [arXiv:1607.02195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Basso, V. Gonçalves and S. Komatsu, Structure constants at wrapping order, JHEP 05 (2017) 124 [arXiv:1702.02154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Georgoudis, V. Gonçalves and R. Pereira, Konishi OPE coefficient at the five loop order, JHEP 11 (2018) 184 [arXiv:1710.06419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A.V. Belitsky, J. Henn, C. Jarczak, D. Mueller and E. Sokatchev, Anomalous dimensions of leading twist conformal operators, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    G.M. Sotkov and R.P. Zaikov, Conformal Invariant Two Point and Three Point Functions for Fields with Arbitrary Spin, Rept. Math. Phys. 12 (1977) 375 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Young, ABJ(M) Chiral Primary Three-Point Function at Two-loops, JHEP 07 (2014) 120 [arXiv:1404.1117] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Young, An Extremal Chiral Primary Three-Point Function at Two-loops in ABJ(M), JHEP 12 (2014) 141 [arXiv:1411.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. 100B (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [INSPIRE].
  49. [49]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  50. [50]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  54. [54]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  55. [55]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial × Space Technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. 84B (1979) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    L.V. Avdeev, O.V. Tarasov and A.A. Vladimirov, Vanishing of the three loop charge renormalization function in a supersymmetric gauge theory, Phys. Lett. 96B (1980) 94 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, On the Scope of Supersymmetric Dimensional Regularization, Phys. Lett. 105B (1981) 272 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L.V. Avdeev and O.V. Tarasov, The Three Loop β-function in the N = 1, N = 2, N = 4 Supersymmetric Yang-Mills Theories, Phys. Lett. 112B (1982) 356 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys. B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    B. Eden, P.S. Howe and P.C. West, Nilpotent invariants in N = 4 SYM, Phys. Lett. B 463 (1999) 19 [hep-th/9905085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    G. Arutyunov, B. Eden and E. Sokatchev, On nonrenormalization and OPE in superconformal field theories, Nucl. Phys. B 619 (2001) 359 [hep-th/0105254] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    P.J. Heslop and P.S. Howe, OPEs and three-point correlators of protected operators in N = 4 SYM, Nucl. Phys. B 626 (2002) 265 [hep-th/0107212] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Bianchi, B. Eden, G. Rossi and Y.S. Stanev, On operator mixing in N = 4 SYM, Nucl. Phys. B 646 (2002) 69 [hep-th/0205321] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    S. Penati, A. Santambrogio and D. Zanon, Two point functions of chiral operators in N = 4 SYM at order g 4, JHEP 12 (1999) 006 [hep-th/9910197] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations