# Partial Deconfinement

- 39 Downloads

## Abstract

We argue that the confined and deconfined phases in gauge theories are connected by a *partially deconfined* phase (i.e. SU(*M*) in SU(*N*), where *M* < *N*, is deconfined), which can be stable or unstable depending on the details of the theory. When this phase is unstable, it is the gauge theory counterpart of the small black hole phase in the dual string theory. Partial deconfinement is closely related to the Gross-Witten-Wadia transition, and is likely to be relevant to the QCD phase transition.

The mechanism of partial deconfinement is related to a generic property of a class of systems. As an instructive example, we demonstrate the similarity between the Yang-Mills theory/string theory and a mathematical model of the collective behavior of ants [Beekman et al., Proceedings of the National Academy of Sciences, 2001]. By identifying the D-brane, open string and black hole with the ant, pheromone and ant trail, the dynamics of two systems closely resemble with each other, and qualitatively the same phase structures are obtained.

## Keywords

Black Holes in String Theory Gauge-gravity correspondence## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]G. ’t Hooft,
*Dimensional reduction in quantum gravity*,*Conf. Proc.***C 930308**(1993) 284 [gr-qc/9310026] [INSPIRE]. - [2]L. Susskind,
*The world as a hologram*,*J. Math. Phys.***36**(1995) 6377 [hep-th/9409089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [3]J.M. Maldacena,
*The large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [4]E. Witten,
*Anti-de Sitter space, thermal phase transition and confinement in gauge theories*,*Adv. Theor. Math. Phys.***2**(1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [5]O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk,
*The Hagedorn*—*deconfinement phase transition in weakly coupled large N gauge theories*,*Adv. Theor. Math. Phys.***8**(2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [6]M. Hanada and J. Maltz,
*A proposal of the gauge theory description of the small Schwarzschild black hole in AdS*_{5}×*S*^{5},*JHEP***02**(2017) 012 [arXiv:1608.03276] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [7]D. Berenstein,
*Submatrix deconfinement and small black holes in AdS*,*JHEP***09**(2018) 054 [arXiv:1806.05729] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]C.T. Asplund and D. Berenstein,
*Small AdS black holes from SYM*,*Phys. Lett.***B 673**(2009) 264 [arXiv:0809.0712] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]E. Berkowitz, M. Hanada and J. Maltz,
*Chaos in Matrix Models and Black Hole Evaporation*,*Phys. Rev.***D 94**(2016) 126009 [arXiv:1602.01473] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [10]E. Berkowitz, M. Hanada and J. Maltz,
*A microscopic description of black hole evaporation via holography*,*Int. J. Mod. Phys.***D 25**(2016) 1644002 [arXiv:1603.03055] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [11]J. Liddle and M. Teper,
*The deconfining phase transition in D*= 2*+1*SU(*N*)*gauge theories*, arXiv:0803.2128 [INSPIRE]. - [12]B. Lucini, M. Teper and U. Wenger,
*The high temperature phase transition in*SU(*N*)*gauge theories*,*JHEP***01**(2004) 061 [hep-lat/0307017] [INSPIRE]. - [13]L. Álvarez-Gaumé, P. Basu, M. Mariño and S.R. Wadia,
*Blackhole/String Transition for the Small Schwarzschild Blackhole of AdS*_{5}*x S*^{5}*and Critical Unitary Matrix Models*,*Eur. Phys. J.***C 48**(2006) 647 [hep-th/0605041] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [14]M. Beekman, D.J.T. Sumpter and F.L.W. Ratnieks,
*Phase transition between disordered and ordered foraging in Pharaoh*’*s ants*,*Proc. Nat. Acad. Sci.***98**(2001) 9703.ADSCrossRefGoogle Scholar - [15]L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein,
*Beauty is attractive: Moduli trapping at enhanced symmetry points*,*JHEP***05**(2004) 030 [hep-th/0403001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [16]B. Sundborg,
*The Hagedorn transition, deconfinement and N*= 4*SYM theory*,*Nucl. Phys.***B 573**(2000) 349 [hep-th/9908001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]D.J. Gross and E. Witten,
*Possible Third Order Phase Transition in the Large N Lattice Gauge Theory*,*Phys. Rev.***D 21**(1980) 446 [INSPIRE].ADSGoogle Scholar - [18]
- [19]S.R. Wadia,
*N = Infinity Phase Transition in a Class of Exactly Soluble Model Lattice Gauge Theories*,*Phys. Lett.***93B**(1980) 403 [INSPIRE].ADSCrossRefGoogle Scholar - [20]R. Hagedorn,
*Statistical thermodynamics of strong interactions at high-energies*,*Nuovo Cim. Suppl.***3**(1965) 147 [INSPIRE].Google Scholar - [21]B. Sundborg,
*Strings hot fast and heavy*, Institute of Theoretical Physics, (1988), https://gupea.ub.gu.se/handle/2077/14375. - [22]
- [23]G.T. Horowitz and J. Polchinski,
*A correspondence principle for black holes and strings*,*Phys. Rev.***D 55**(1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar - [24]M. Hanada, J. Maltz and L. Susskind,
*Deconfinement transition as black hole formation by the condensation of QCD strings*,*Phys. Rev.***D 90**(2014) 105019 [arXiv:1405.1732] [INSPIRE].ADSGoogle Scholar - [25]Y. Hidaka and R.D. Pisarski,
*Zero Point Energy of Renormalized Wilson Loops*,*Phys. Rev.***D 80**(2009) 074504 [arXiv:0907.4609] [INSPIRE].ADSGoogle Scholar - [26]S. Gupta, K. Huebner and O. Kaczmarek,
*Renormalized Polyakov loops in many representations*,*Phys. Rev.***D 77**(2008) 034503 [arXiv:0711.2251] [INSPIRE].ADSGoogle Scholar - [27]A. Mykkanen, M. Panero and K. Rummukainen,
*Casimir scaling and renormalization of Polyakov loops in large-N gauge theories*,*JHEP***05**(2012) 069 [arXiv:1202.2762] [INSPIRE].ADSGoogle Scholar - [28]A. Dumitru, J. Lenaghan and R.D. Pisarski,
*Deconfinement in matrix models about the Gross-Witten point*,*Phys. Rev.***D 71**(2005) 074004 [hep-ph/0410294] [INSPIRE]. - [29]H. Nishimura, R.D. Pisarski and V.V. Skokov,
*Finite-temperature phase transitions of third and higher order in gauge theories at large N*,*Phys. Rev.***D 97**(2018) 036014 [arXiv:1712.04465] [INSPIRE].ADSMathSciNetGoogle Scholar - [30]B. de Wit, J. Hoppe and H. Nicolai,
*On the Quantum Mechanics of Supermembranes*,*Nucl. Phys.***B 305**(1988) 545 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [31]E. Witten,
*Bound states of strings and p-branes*,*Nucl. Phys.***B 460**(1996) 335 [hep-th/9510135] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]T. Banks, W. Fischler, S.H. Shenker and L. Susskind,
*M theory as a matrix model: A conjecture*,*Phys. Rev.***D 55**(1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [33]N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz,
*Supergravity and the large N limit of theories with sixteen supercharges*,*Phys. Rev.***D 58**(1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar - [34]N. Kawahara, J. Nishimura and S. Takeuchi,
*Phase structure of matrix quantum mechanics at finite temperature*,*JHEP***10**(2007) 097 [arXiv:0706.3517] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [35]D.E. Berenstein, J.M. Maldacena and H.S. Nastase,
*Strings in flat space and pp waves from N*= 4*superYang-Mills*,*JHEP***04**(2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefGoogle Scholar - [36]M.S. Costa, L. Greenspan, J. Penedones and J. Santos,
*Thermodynamics of the BMN matrix model at strong coupling*,*JHEP***03**(2015) 069 [arXiv:1411.5541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]J. Maldacena and A. Milekhin,
*To gauge or not to gauge?*,*JHEP***04**(2018) 084 [arXiv:1802.00428] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [38]E. Berkowitz, E. Rinaldi, M. Hanada, G. Ishiki, S. Shimasaki and P. Vranas,
*Precision lattice test of the gauge/gravity duality at large-N*,*Phys. Rev.***D 94**(2016) 094501 [arXiv:1606.04951] [INSPIRE].ADSGoogle Scholar - [39]E. Berkowitz, M. Hanada, E. Rinaldi and P. Vranas,
*Gauged And Ungauged: A Nonperturbative Test*,*JHEP***06**(2018) 124 [arXiv:1802.02985] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [40]O. Aharony, J. Marsano, S. Minwalla and T. Wiseman,
*Black hole-black string phase transitions in thermal 1+1 dimensional supersymmetric Yang-Mills theory on a circle*,*Class. Quant. Grav.***21**(2004) 5169 [hep-th/0406210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [41]S. Catterall, A. Joseph and T. Wiseman,
*Thermal phases of D1-branes on a circle from lattice super Yang-Mills*,*JHEP***12**(2010) 022 [arXiv:1008.4964] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [42]S. Catterall, R.G. Jha, D. Schaich and T. Wiseman,
*Testing holography using lattice super-Yang-Mills theory on a 2-torus*,*Phys. Rev.***D 97**(2018) 086020 [arXiv:1709.07025] [INSPIRE].ADSMathSciNetGoogle Scholar - [43]O.J.C. Dias, J.E. Santos and B. Way,
*Localised and nonuniform thermal states of super-Yang-Mills on a circle*,*JHEP***06**(2017) 029 [arXiv:1702.07718] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [44]T. Harmark,
*Small black holes on cylinders*,*Phys. Rev.***D 69**(2004) 104015 [hep-th/0310259] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [45]R. Gregory and R. Laflamme,
*Black strings and p-branes are unstable*,*Phys. Rev. Lett.***70**(1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [46]Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo,
*The order of the quantum chromodynamics transition predicted by the standard model of particle physics*,*Nature***443**(2006) 675 [hep-lat/0611014] [INSPIRE]. - [47]S. Muroya, A. Nakamura, C. Nonaka and T. Takaishi,
*Lattice QCD at finite density: An introductory review*,*Prog. Theor. Phys.***110**(2003) 615 [hep-lat/0306031] [INSPIRE]. - [48]N. Jokela, A. Pönni and A. Vuorinen,
*Small black holes in global AdS spacetime*,*Phys. Rev.***D 93**(2016) 086004 [arXiv:1508.00859] [INSPIRE].ADSGoogle Scholar - [49]O.J. Dias, J.E. Santos and B. Way,
*Localised AdS*_{5}×*S*^{5}*Black Holes*,*Phys. Rev. Lett.***117**(2016) 151101 [arXiv:1605.04911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [50]L.G. Yaffe,
*Large N phase transitions and the fate of small Schwarzschild-AdS black holes*,*Phys. Rev.***D 97**(2018) 026010 [arXiv:1710.06455] [INSPIRE].ADSMathSciNetGoogle Scholar - [51]D. Marolf,
*Microcanonical Path Integrals and the Holography of small Black Hole Interiors*,*JHEP***09**(2018) 114 [arXiv:1808.00394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [52]D. Schaich,
*Progress and prospects of lattice supersymmetry*, in*36th International Symposium on Lattice Field Theory (Lattice 2018) East Lansing, MI, United States, July 22–28, 2018*, 2018, arXiv:1810.09282 [INSPIRE]. - [53]M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya,
*Direct test of the gauge-gravity correspondence for Matrix theory correlation functions*,*JHEP***12**(2011) 020 [arXiv:1108.5153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [54]D. Berenstein,
*Negative specific heat from non-planar interactions and small black holes in AdS/CFT*, arXiv:1810.07267 [INSPIRE]. - [55]D. Sumpter,
*Soccermatics: mathematical adventures in the beautiful game*, Bloomsbury Publishing, (2016).Google Scholar - [56]O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena,
*N*= 6*superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*,*JHEP***10**(2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [57]V. Pestun et al.,
*Localization techniques in quantum field theories*,*J. Phys.***A 50**(2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetzbMATHGoogle Scholar