Advertisement

Continuum naturalness

  • Csaba Csáki
  • Gabriel Lee
  • Seung J. LeeEmail author
  • Salvator Lombardo
  • Ofri Telem
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

We present a novel class of composite Higgs models in which the top and gauge partners responsible for cutting off the Higgs quadratic divergences form a continuum. The continuum states are characterized by their spectral densities, which should have a finite gap for realistic models. We present a concrete example based on a warped extra dimension with a linear dilaton, where this finite gap appears naturally. We derive the spectral densities in this model and calculate the full Higgs potential for a phenomenologically viable benchmark point, with percent level tuning. The continuum top and gauge partners in this model evade all resonance searches at the LHC and yield qualitatively different collider signals.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. 145B (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].
  3. [3]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  4. [4]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, U.S.A., 1–26 June 2009, pp. 235–306, 2011, arXiv:1005.4269 [ https://doi.org/10.1142/9789814327183_0005] [INSPIRE].
  5. [5]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961].CrossRefzbMATHGoogle Scholar
  7. [7]
    C. Csáki, C. Grojean and J. Terning, Alternatives to an Elementary Higgs, Rev. Mod. Phys. 88 (2016) 045001 [arXiv:1512.00468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Csáki and P. Tanedo, Beyond the Standard Model, in Proceedings, 2013 European School of High-Energy Physics (ESHEP 2013): Paradfurdo, Hungary, June 5–18, 2013, pp. 169–268, 2015, arXiv:1602.04228 [ https://doi.org/10.5170/CERN-2015-004.169] [INSPIRE].
  9. [9]
    C. Csáki, S. Lombardo and O. Telem, TASI Lectures on Non-supersymmetric BSM Models, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, U.S.A., June 6 – July 1, 2016, pp. 501–570, WSP, WSP, 2018, arXiv:1811.04279 [ https://doi.org/10.1142/9789813233348_0007] [INSPIRE].
  10. [10]
    CMS collaboration, Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Submitted to: JHEP (2018) [arXiv:1810.03188] [INSPIRE].
  11. [11]
    CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 90 [arXiv:1809.08597] [INSPIRE].
  12. [12]
    CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092005 [arXiv:1808.01771] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 12 (2018) 039 [arXiv:1807.11883] [INSPIRE].
  15. [15]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].
  16. [16]
    CMS collaboration, Search for a heavy resonance decaying into a Z boson and a Z or W boson in 22q final states at \( \sqrt{s} \) = 13 TeV, JHEP 09 (2018) 101 [arXiv:1803.10093] [INSPIRE].
  17. [17]
    CMS collaboration, Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2018) 088 [arXiv:1802.09407] [INSPIRE].
  18. [18]
    ATLAS collaboration, Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 787 (2018) 68 [arXiv:1806.01532] [INSPIRE].
  19. [19]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].
  20. [20]
    H. Georgi, Another odd thing about unparticle physics, Phys. Lett. B 650 (2007) 275 [arXiv:0704.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Cacciapaglia, G. Marandella and J. Terning, Colored Unparticles, JHEP 01 (2008) 070 [arXiv:0708.0005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/Unparticle Correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Stancato and J. Terning, The Unhiggs, JHEP 11 (2009) 101 [arXiv:0807.3961] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Falkowski and M. Pérez-Victoria, Electroweak Breaking on a Soft Wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Falkowski and M. Pérez-Victoria, Holographic Unhiggs, Phys. Rev. D 79 (2009) 035005 [arXiv:0810.4940] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Bellazzini, C. Csáki, J. Hubisz, S.J. Lee, J. Serra and J. Terning, Quantum Critical Higgs, Phys. Rev. X 6 (2016) 041050 [arXiv:1511.08218] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  29. [29]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  30. [30]
    O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    I. Antoniadis, S. Dimopoulos and A. Giveon, Little string theory at a TeV, JHEP 05 (2001) 055 [hep-th/0103033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D.B. Kaplan, Flavor at SSC energies: A new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].
  35. [35]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  36. [36]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].
  37. [37]
    K. Agashe, G. Pérez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].
  38. [38]
    N.S. Manton, A New Six-Dimensional Approach to the Weinberg-Salam Model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. 126B (1983) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Kubo, C.S. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [INSPIRE].
  42. [42]
    G. von Gersdorff, N. Irges and M. Quirós, Finite mass corrections in orbifold gauge theories, in Proceedings, 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories: Les Arcs, France, March 9–16, 2002, pp. 169–176, 2002, hep-ph/0206029 [INSPIRE].
  43. [43]
    G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [INSPIRE].
  44. [44]
    B. Batell, T. Gherghetta and D. Sword, The Soft-Wall Standard Model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [INSPIRE].ADSGoogle Scholar
  45. [45]
    B. Batell and T. Gherghetta, Dynamical Soft-Wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-Wall Stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Falkowski, About the holographic pseudo-Goldstone boson, Phys. Rev. D 75 (2007) 025017 [hep-ph/0610336] [INSPIRE].
  48. [48]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Csáki, G. Lee, S.J. Lee and O. Telem, Phenomenology of Continuum Partners, to appear.Google Scholar
  50. [50]
    G. Källén, On the definition of the Renormalization Constants in Quantum Electrodynamics, Helv. Phys. Acta 25 (1952) 417.MathSciNetzbMATHGoogle Scholar
  51. [51]
    H. Lehmann, On the Properties of propagation functions and renormalization contants of quantized fields, Nuovo Cim. 11 (1954) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    H. Cai, H.-C. Cheng, A.D. Medina and J. Terning, Continuum Superpartners from Supersymmetric Unparticles, Phys. Rev. D 80 (2009) 115009 [arXiv:0910.3925] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G.F. Giudice, Y. Kats, M. McCullough, R. Torre and A. Urbano, Clockwork/linear dilaton: structure and phenomenology, JHEP 06 (2018) 009 [arXiv:1711.08437] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  55. [55]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].
  58. [58]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    R. Contino, P. Creminelli and E. Trincherini, Holographic evolution of gauge couplings, JHEP 10 (2002) 029 [hep-th/0208002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV and first determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 73 (2013) 2604 [arXiv:1304.7498] [INSPIRE].
  61. [61]
    CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].
  62. [62]
    CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 75 (2015) 288 [arXiv:1410.6765] [INSPIRE].
  63. [63]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratory for Elementary Particle PhysicsCornell UniversityIthacaU.S.A.
  2. 2.Department of PhysicsKorea UniversitySeoulRepublic of Korea
  3. 3.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations