Advertisement

Low frequency propagating shear waves in holographic liquids

  • Matteo BaggioliEmail author
  • Kostya Trachenko
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

Recently, it has been realized that liquids are able to support solid-like transverse modes with an interesting gap in momentum space developing in the dispersion relation. We show that this gap is also present in simple holographic bottom-up models, and it is strikingly similar to the gap in liquids in several respects. Firstly, the appropriately defined relaxation time in the holographic models decreases with temperature in the same way. More importantly, the holographic k-gap increases with temperature and with the inverse of the relaxation time. Our results suggest that the Maxwell-Frenkel approach to liquids, involving the additivity of liquid hydrodynamic and solid-like elastic responses, can be applicable to a much wider class of physical systems and effects than thought previously, including relativistic models and strongly-coupled quantum field theories. More precisely, the dispersion relation of the propagating shear waves is in perfect agreement with the Maxwell-Frenkel approach. On the contrary the relaxation time appearing in the holographic models considered does not match the Maxwell prediction in terms of the shear viscosity and the instantaneous elastic modulus but it shares the same temperature dependence.

Keywords

Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence AdS-CFT Correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics), 2 edition, Butterworth-Heinemann (1987).Google Scholar
  2. [2]
    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 7, Theory of Elasticity, Pergamon Press (1970).Google Scholar
  3. [3]
    P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995).Google Scholar
  4. [4]
    F.H. MacDougall, Kinetic theory of liquids. By J. Frenkel., J. Phys. Chem. 51 (1947) 1032.Google Scholar
  5. [5]
    K. Trachenko and V.V. Brazhkin, Collective modes and thermodynamics of the liquid state, Rept. Prog. Phys. 79 (2016) 016502 [arXiv:1512.06592].
  6. [6]
    H. Mendil, P. Baroni and L. Noirez, Solid-like rheological response of non-entangled polymers in the molten state, Eur. Phys. J. E 19 (2006) 77.Google Scholar
  7. [7]
    L. Noirez, P. Baroni and H. Mendil-Jakani, The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers, Polym. Int. 58 962.Google Scholar
  8. [8]
    L. Noirez and P. Baroni, Revealing the solid-like nature of glycerol at ambient temperature, J. Molec. Struc. 972 (2010) 16.ADSCrossRefGoogle Scholar
  9. [9]
    L. Noirez and P. Baroni, Identification of a low-frequency elastic behaviour in liquid water, J. Phys. Condens. Matter 24 (2012) 372101.CrossRefGoogle Scholar
  10. [10]
    C. Yang, M.T. Dove, V.V. Brazhkin and K. Trachenko, Emergence and evolution of the k gap in spectra of liquid and supercritical states, Phys. Rev. Lett. 118 (2017) 215502.ADSCrossRefGoogle Scholar
  11. [11]
    K. Trachenko, Lagrangian formulation and symmetrical description of liquid dynamics, Phys. Rev. E 96 (2017) 062134.Google Scholar
  12. [12]
    D. Bolmatov, E.T. Musaev and K. Trachenko, Symmetry breaking gives rise to three states of matter, Sci. Rept. 3 (2013) 2794 [arXiv:1306.1892] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Zaccone and E. Scossa-Romano, Approximate analytical description of the nonaffine response of amorphous solids, Phys. Rev. B 83 (2011) 184205.Google Scholar
  14. [14]
    A. Zaccone and E.M. Terentjev, Disorder-assisted melting and the glass transition in amorphous solids, Phys. Rev. Lett. 110 (2013) 178002.ADSCrossRefGoogle Scholar
  15. [15]
    A. Zaccone, P. Schall and E.M. Terentjev, Microscopic origin of nonlinear nonaffine deformation in bulk metallic glasses, Phys. Rev. B 90 (2014) 140203.Google Scholar
  16. [16]
    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
  17. [17]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].
  18. [18]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Baggioli and D.K. Brattan, Drag phenomena from holographic massive gravity, Class. Quant. Grav. 34 (2017) 015008 [arXiv:1504.07635] [INSPIRE].
  23. [23]
    L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid Holography and Massive Gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP 07 (2016) 074 [arXiv:1601.03384] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Baggioli, Gravity, holography and applications to condensed matter, Ph.D. Thesis, Barcelona U. (2016) [arXiv:1610.02681] [INSPIRE].
  26. [26]
    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, JHEP 01 (2018) 129 [arXiv:1708.08477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].
  29. [29]
    M. Baggioli and A. Buchel, Holographic Viscoelastic Hydrodynamics, arXiv:1805.06756 [INSPIRE].
  30. [30]
    A. Esposito, S. Garcia-Saenz, A. Nicolis and R. Penco, Conformal solids and holography, JHEP 12 (2017) 113 [arXiv:1708.09391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Effective holographic theory of charge density waves, Phys. Rev. D 97 (2018) 086017 [arXiv:1711.06610] [INSPIRE].
  32. [32]
    S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].
  33. [33]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Landau and E. Lifshitz, Statistical Physics, Vol. 5, Elsevier Science (2013).Google Scholar
  35. [35]
    J.C. Maxwell, Iv. on the dynamical theory of gases, Phil. Trans. Roy. Soc. Lond. 157 (1867) 49.Google Scholar
  36. [36]
    J.C. Dyre, Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys. 78 (2006) 953.ADSCrossRefGoogle Scholar
  37. [37]
    L. Landau and E. Lifshitz, Fluid Mechanics, Vol. 6, Elsevier Science (2013).Google Scholar
  38. [38]
    G. Feinberg, Possibility of Faster-Than-Light Particles, Phys. Rev. 159 (1967) 1089 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Pu, T. Koide and D.H. Rischke, Does stability of relativistic dissipative fluid dynamics imply causality?, Phys. Rev. D 81 (2010) 114039 [arXiv:0907.3906] [INSPIRE].
  40. [40]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].
  41. [41]
    D.A. Teaney, Viscous Hydrodynamics and the Quark Gluon Plasma, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., pp. 207-266 (2010) [ https://doi.org/10.1142/9789814293297_0004] [arXiv:0905.2433] [INSPIRE].
  42. [42]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  43. [43]
    K. Trachenko, Quantum dissipation in a scalar field theory with gapped momentum states, to appear.Google Scholar
  44. [44]
    P. Romatschke, New Developments in Relativistic Viscous Hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].
  45. [45]
    M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP 07 (2015) 035 [arXiv:1504.05561] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Baggioli and O. Pujolàs, On holographic disorder-driven metal-insulator transitions, JHEP 01 (2017) 040 [arXiv:1601.07897] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Baggioli, B. Goutéraux, E. Kiritsis and W.-J. Li, Higher derivative corrections to incoherent metallic transport in holography, JHEP 03 (2017) 170 [arXiv:1612.05500] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Blake and A. Donos, Diffusion and Chaos from near AdS 2 horizons, JHEP 02 (2017) 013 [arXiv:1611.09380] [INSPIRE].
  51. [51]
    P.B. Allen, J.L. Feldman, J. Fabian and F. Wooten, Diffusons, locons and propagons: Character of atomie yibrations in amorphous si, Phil. Mag. B 79 (1999) 1715.Google Scholar
  52. [52]
    A. Cavagna, Supercooled liquids for pedestrians, Phys. Rept. 476 (2009) 51 [arXiv:0903.4264].ADSCrossRefGoogle Scholar
  53. [53]
    S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].
  54. [54]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].
  55. [55]
    A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].
  56. [56]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
  57. [57]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett. 2 (2009) 221 [arXiv:0811.1033] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    J.F. Fuini, C.F. Uhlemann and L.G. Yaffe, Damping of hard excitations in strongly coupled \( \mathcal{N}=4 \) plasma, JHEP 12 (2016) 042 [arXiv:1610.03491] [INSPIRE].
  60. [60]
    T. Ciobanu and D.M. Ramirez, Shear hydrodynamics, momentum relaxation and the KSS bound, arXiv:1708.04997 [INSPIRE].
  61. [61]
    S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP 03 (2016) 170 [arXiv:1601.02757] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev. D 94 (2016) 106001 [arXiv:1601.04624] [INSPIRE].
  63. [63]
    M. Ammon, M. Baggioli and S. Gray, Viscoelastic-gravity correspondence, in progress.Google Scholar
  64. [64]
    A. Cavagna, I. Giardina and G. Parisi, Analytic computation of the instantaneous normal modes spectrum in low-density liquids, Phys. Rev. Lett. 83 (1999) 108.ADSCrossRefGoogle Scholar
  65. [65]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Baggioli and K. Trachenko, Low frequency propagating shear waves in holographic liquids, arXiv:1807.10530 [INSPIRE].
  67. [67]
    W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118 (1979) 341 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    S. Grozdanov, N. Kaplis and A.O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP 07 (2016) 151 [arXiv:1605.02173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev. D 90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].
  71. [71]
    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].
  72. [72]
    S. Grozdanov and N. Poovuttikul, Generalised global symmetries and magnetohydrodynamic waves in a strongly interacting holographic plasma, arXiv:1707.04182 [INSPIRE].
  73. [73]
    D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    R.E. Arias and I.S. Landea, Hydrodynamic Modes of a holographic pwave superfluid, JHEP 11 (2014) 047 [arXiv:1409.6357] [INSPIRE].
  75. [75]
    A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [INSPIRE].
  76. [76]
    C. Hoyos-Badajoz, A. O’Bannon and J.M.S. Wu, Zero Sound in Strange Metallic Holography, JHEP 09 (2010) 086 [arXiv:1007.0590] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    C.-F. Chen and A. Lucas, Origin of the Drude peak and of zero sound in probe brane holography, Phys. Lett. B 774 (2017) 569 [arXiv:1709.01520] [INSPIRE].
  78. [78]
    A. Lucas, Sound waves and resonances in electron-hole plasma, Phys. Rev. B 93 (2016) 245153 [arXiv:1604.03955].
  79. [79]
    T. Andrade, S.A. Gentle and B. Withers, Drude in D major, JHEP 06 (2016) 134 [arXiv:1512.06263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Fisica Teorica UAM/CSICUniversidad Autonoma de MadridMadridSpain
  2. 2.Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  3. 3.School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations