Advertisement

On the correspondence between surface operators in Argyres-Douglas theories and modules of chiral algebra

  • Takahiro Nishinaka
  • Shinya Sasa
  • Rui-Dong ZhuEmail author
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We compute the Schur index of Argyres-Douglas theories of type (AN −1,AM −1) with surface operators inserted, via the Higgsing prescription proposed by D. Gaiotto, L. Rastelli and S.S. Razamat. These surface operators are obtained by turning on position-dependent vacuum expectation values of operators in a UV theory which can flow to the Argyres-Douglas theories. We focus on two series of (AN −1, AM −1) theories; one with gcd(N, M) = 1 and the other with M = N (k − 1) for an integer k ≥ 2. Our results are identified with the characters of non-vacuum modules of the associated 2d chiral algebras, which explicitly confirms a remarkable correspondence recently discovered by C. Cordova, D. Gaiotto and S.-H. Shao.

Keywords

Conformal and W Symmetry Duality in Gauge Field Theories Conformal Field Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Wyllard, A(N − 1) conformal Toda field theory correlation functions from conformal \( \mathcal{N}=2 \) SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].
  3. [3]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].
  4. [4]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
  6. [6]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  7. [7]
    C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
  8. [8]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas Theories and S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Xie and S.-T. Yau, New \( \mathcal{N}=2 \) dualities, arXiv:1602.03529 [INSPIRE].
  11. [11]
    D. Xie and S.-T. Yau, Argyres-Douglas matter and \( \mathcal{N}=2 \) dualities, arXiv:1701.01123 [INSPIRE].
  12. [12]
    M. Buican, Z. Laczko and T. Nishinaka, \( \mathcal{N}=2 \) S-duality revisited, JHEP 09 (2017) 087 [arXiv:1706.03797] [INSPIRE].
  13. [13]
    D. Xie and K. Ye, Argyres-Douglas matter and S-duality: Part II, JHEP 03 (2018) 186 [arXiv:1711.06684] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Buican and T. Nishinaka, Conformal Manifolds in Four Dimensions and Chiral Algebras, J. Phys. A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE].
  15. [15]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Buican and Z. Laczko, Nonunitary Lagrangians and unitary non-Lagrangian conformal field theories, Phys. Rev. Lett. 120 (2018) 081601 [arXiv:1711.09949] [INSPIRE].
  17. [17]
    C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defect Indices and 2d-4d BPS States, JHEP 12 (2017) 078 [arXiv:1703.02525] [INSPIRE].
  18. [18]
    C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defects and Chiral Algebras, JHEP 05 (2017) 140 [arXiv:1704.01955] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Cordova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur Indices, JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].
  21. [21]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New \( \mathcal{N}=2 \) superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].
  22. [22]
    T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of \( \mathcal{N}=2 \) superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].
  23. [23]
    S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].
  24. [24]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Wild Quiver Gauge Theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    C. Cordova and S.-H. Shao, Schur Indices, BPS Particles and Argyres-Douglas Theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Ito and H. Shu, ODE/IM correspondence and the Argyres-Douglas theory, JHEP 08 (2017) 071 [arXiv:1707.03596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    K. Ito, M. Mariño and H. Shu, TBA equations and resurgent Quantum Mechanics, JHEP 01 (2019) 228 [arXiv:1811.04812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Creutzig, W-algebras for Argyres-Douglas theories, arXiv:1701.05926 [INSPIRE].
  30. [30]
    C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential equations, JHEP 08 (2018) 114 [arXiv:1707.07679] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Creutzig, Logarithmic W-algebras and Argyres-Douglas theories at higher rank, JHEP 11 (2018) 188 [arXiv:1809.01725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Choi and T. Nishinaka, On the chiral algebra of Argyres-Douglas theories and S-duality, JHEP 04 (2018) 004 [arXiv:1711.07941] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE].
  34. [34]
    M. Buican and T. Nishinaka, On Irregular Singularity Wave Functions and Superconformal Indices, JHEP 09 (2017) 066 [arXiv:1705.07173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov and I.Y. Tipunin, Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, Theor. Math. Phys. 148 (2006) 1210 [math/0512621] [INSPIRE].
  36. [36]
    B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov and I.Y. Tipunin, Logarithmic extensions of minimal models: Characters and modular transformations, Nucl. Phys. B 757 (2006) 303 [hep-th/0606196] [INSPIRE].
  37. [37]
    D. Adamovic and A. Milas, On the triplet vertex algebra W (p), Adv. Math. 217 (2008) 2664 [arXiv:0707.1857] [INSPIRE].
  38. [38]
    A. Tsuchiya and S. Wood, The tensor structure on the representation category of the W p triplet algebra, J. Phys. A 46 (2013) 445203 [arXiv:1201.0419] [INSPIRE].
  39. [39]
    T. Creutzig, D. Ridout and S. Wood, Coset Constructions of Logarithmic (1, p) Models, Lett. Math. Phys. 104 (2014) 553 [arXiv:1305.2665] [INSPIRE].
  40. [40]
    M. Buican and T. Nishinaka, Argyres-Douglas Theories, the Macdonald Index and an RG Inequality, JHEP 02 (2016) 159 [arXiv:1509.05402] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Buican and T. Nishinaka, Argyres-Douglas theories, S 1 reductions and topological symmetries, J. Phys. A 49 (2016) 045401 [arXiv:1505.06205] [INSPIRE].
  42. [42]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT, JHEP 02 (2016) 045 [arXiv:1509.06730] [INSPIRE].
  44. [44]
    L.F. Alday, M. Bullimore, M. Fluder and L. Hollands, Surface defects, the superconformal index and q-deformed Yang-Mills, JHEP 10 (2013) 018 [arXiv:1303.4460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Bullimore, M. Fluder, L. Hollands and P. Richmond, The superconformal index and an elliptic algebra of surface defects, JHEP 10 (2014) 062 [arXiv:1401.3379] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H.-Y. Chen and H.-Y. Chen, Heterotic Surface Defects and Dualities from 2d/4d Indices, JHEP 10 (2014) 004 [arXiv:1407.4587] [INSPIRE].
  47. [47]
    K. Maruyoshi and J. Yagi, Surface defects as transfer matrices, PTEP 2016 (2016) 113B01 [arXiv:1606.01041] [INSPIRE].
  48. [48]
    Y. Ito and Y. Yoshida, Superconformal index with surface defects for class \( {\mathcal{S}}_k \), arXiv:1606.01653 [INSPIRE].
  49. [49]
    B. Nazzal and S.S. Razamat, Surface Defects in E-String Compactifications and the van Diejen Model, SIGMA 14 (2018) 036 [arXiv:1801.00960] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  50. [50]
    S.S. Razamat, Flavored surface defects in 4d \( \mathcal{N}=1 \) SCFTs, arXiv:1808.09509 [INSPIRE].
  51. [51]
    M. Buican, Z. Laczko and T. Nishinaka, Flowing from 16 to 32 Supercharges, JHEP 10 (2018) 175 [arXiv:1807.02785] [INSPIRE].
  52. [52]
    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].
  54. [54]
    D. Altschuler, M. Bauer and H. Saleur, Level rank duality in nonunitary coset theories, J. Phys. A 23 (1990) L789 [INSPIRE].
  55. [55]
    J. Song, D. Xie and W. Yan, Vertex operator algebras of Argyres-Douglas theories from M5-branes, JHEP 12 (2017) 123 [arXiv:1706.01607] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    B.L. Feigin and A.M. Semikhatov, W n(2) algebras, Nucl. Phys. B 698 (2004) 409 [math/0401164] [INSPIRE].
  57. [57]
    T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, arXiv:1708.00875 [INSPIRE].
  58. [58]
    D. Gaiotto and M. Rapčák, Vertex Algebras at the Corner, JHEP 01 (2019) 160 [arXiv:1703.00982] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    J. Song, Macdonald Index and Chiral Algebra, JHEP 08 (2017) 044 [arXiv:1612.08956] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    F. Bonetti, C. Meneghelli and L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, arXiv:1810.03612 [INSPIRE].
  61. [61]
    M. Fukuda, S. Nakamura, Y. Matsuo and R.-D. Zhu, SH c realization of minimal model CFT: triality, poset and Burge condition, JHEP 11 (2015) 168 [arXiv:1509.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    V. Belavin, O. Foda and R. Santachiara, AGT, N-Burge partitions and \( {\mathcal{W}}_N \) minimal models, JHEP 10 (2015) 073 [arXiv:1507.03540] [INSPIRE].
  63. [63]
    D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP 10 (2016) 012 [arXiv:1412.2781] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].
  65. [65]
    S. Gukov and E. Witten, Rigid Surface Operators, Adv. Theor. Math. Phys. 14 (2010) 87 [arXiv:0804.1561] [INSPIRE].
  66. [66]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physical Sciences, College of Science and EngineeringRitsumeikan UniversityShigaJapan
  2. 2.Department of PhysicsThe University of TokyoTokyoJapan

Personalised recommendations