Advertisement

E9 exceptional field theory. Part I. The potential

  • Guillaume BossardEmail author
  • Franz Ciceri
  • Gianluca Inverso
  • Axel Kleinschmidt
  • Henning Samtleben
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

We construct the scalar potential for the exceptional field theory based on the affine symmetry group E9. The fields appearing in this potential live formally on an infinite-dimensional extended spacetime and transform under E9 generalised diffeomorphisms. In addition to the scalar fields expected from D = 2 maximal supergravity, the invariance of the potential requires the introduction of new constrained scalar fields. Other essential ingredients in the construction include the Virasoro algebra and indecomposable representations of E9. Upon solving the section constraint, the potential reproduces the dynamics of either eleven-dimensional or type IIB supergravity in the presence of two isometries.

Keywords

Extended Supersymmetry String Duality Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Hillmann, E 7(7) and d = 11 supergravity, Ph.D. thesis, Humboldt University Berlin, Germany, (2008), arXiv:0902.1509 [INSPIRE].
  4. [4]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].
  6. [6]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  7. [7]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  9. [9]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  10. [10]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Cederwall, Non-gravitational exceptional supermultiplets, JHEP 07 (2013) 025 [arXiv:1302.6737] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist and H. Samtleben, Generalized diffeomorphisms for E 9, Phys. Rev. D 96 (2017) 106022 [arXiv:1708.08936] [INSPIRE].
  14. [14]
    M. Cederwall and J. Palmkvist, Extended geometries, JHEP 02 (2018) 071 [arXiv:1711.07694] [INSPIRE].
  15. [15]
    E. Cremmer and B. Julia, The N = 8 Supergravity Theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].
  16. [16]
    B. Julia, Kac-Moody symmetry of gravitation and supergravity theories, Lectures Appl. Math. 21 (1985) 335.Google Scholar
  17. [17]
    H. Nicolai, The Integrability of N = 16 Supergravity, Phys. Lett. B 194 (1987) 402 [INSPIRE].
  18. [18]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1., Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].
  19. [19]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].
  20. [20]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].
  21. [21]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  23. [23]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  24. [24]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  25. [25]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP 05 (2013) 161 [arXiv:1301.0467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    H. Godazgar, M. Godazgar and H. Nicolai, Embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions, Phys. Rev. D 89 (2014) 045009 [arXiv:1312.1061] [INSPIRE].
  28. [28]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Julia, Infinite Lie algebras in physics, proceedings of Johns Hopkins Workshop on Current Problems in Particle Theory, LPTENS-81-14 [INSPIRE].
  31. [31]
    H. Samtleben and M. Weidner, Gauging hidden symmetries in two dimensions, JHEP 08 (2007) 076 [arXiv:0705.2606] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in Exceptional Field Theory: the SL(5) duality group, JHEP 08 (2018) 021 [arXiv:1710.09740] [INSPIRE].
  35. [35]
    J.J. Fernández-Melgarejo, T. Kimura and Y. Sakatani, Weaving the Exotic Web, JHEP 09 (2018) 072 [arXiv:1805.12117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D.S. Berman, E.T. Musaev and R. Otsuki, Exotic Branes in Exceptional Field Theory: E 7(7) and Beyond, JHEP 12 (2018) 053 [arXiv:1806.00430] [INSPIRE].
  37. [37]
    P. Goddard and D.I. Olive, Kac-Moody and Virasoro Algebras in Relation to Quantum Physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].
  38. [38]
    H. Sugawara, A field theory of currents, Phys. Rev. 170 (1968) 1659 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Julia and H. Nicolai, Conformal internal symmetry of 2-D σ-models coupled to gravity and a dilaton, Nucl. Phys. B 482 (1996) 431 [hep-th/9608082] [INSPIRE].
  40. [40]
    R.P. Geroch, A method for generating solutions of Einsteins equations, J. Math. Phys. 12 (1971) 918 [INSPIRE].
  41. [41]
    P. Breitenlohner and D. Maison, On the Geroch group, Ann. Inst. H. Poincaré Phys. Theor. 46 (1987) 215.Google Scholar
  42. [42]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    H. Nicolai and H. Samtleben, On K(E 9 ), Q. J. Pure Appl. Math. 1 (2005) 180 [hep-th/0407055] [INSPIRE].
  44. [44]
    E. Cremmer, H. Lü, C.N. Pope and K.S. Stelle, Spectrum generating symmetries for BPS solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].
  45. [45]
    V.G. Kac and D.H. Peterson, Defining relations of certain infinite dimensional groups, Astérisque Hors-Série, (1984), pp. 165-208.Google Scholar
  46. [46]
    J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987) 542.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    L. Carbone and H. Garland, Existence of lattices in Kac-Moody groups over finite fields, Commun. Contemp. Math. 5 (2003) 813.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    T. De Medts, R. Gramlich, M. Horn Iwasawa decompositions of split Kac-Moody groups, J. Lie Theory 19 (2009) 311.Google Scholar
  49. [49]
    O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].
  50. [50]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, JHEP 01 (2016) 164 [arXiv:1510.07859] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    H. Godazgar, M. Godazgar and M.J. Perry, E8 duality and dual gravity, JHEP 06 (2013) 044 [arXiv:1303.2035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    V.A. Belinsky and V.E. Zakharov, Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions, Sov. Phys. JETP 48 (1978) 985 [Zh. Eksp. Teor. Fiz. 75 (1978) 1953] [INSPIRE].
  54. [54]
    D. Maison, Are the stationary, axially symmetric Einstein equations completely integrable?, Phys. Rev. Lett. 41 (1978) 521 [INSPIRE].
  55. [55]
    D. Bernard and B. Julia, Twisted self-duality of dimensionally reduced gravity and vertex operators, Nucl. Phys. B 547 (1999) 427 [hep-th/9712254] [INSPIRE].
  56. [56]
    M. Cederwall and J.A. Rosabal, E 8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843] [INSPIRE].
  57. [57]
    A. Baguet and H. Samtleben, E 8(8) Exceptional Field Theory: Geometry, Fermions and Supersymmetry, JHEP 09 (2016) 168 [arXiv:1607.03119] [INSPIRE].
  58. [58]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
  59. [59]
    P. West, Generalised Space-time and Gauge Transformations, JHEP 08 (2014) 050 [arXiv:1403.6395] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    A.G. Tumanov and P. West, E11 in 11D, Phys. Lett. B 758 (2016) 278 [arXiv:1601.03974] [INSPIRE].
  61. [61]
    T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].
  62. [62]
    G. Bossard, A. Kleinschmidt, J. Palmkvist, C.N. Pope and E. Sezgin, Beyond E 11, JHEP 05 (2017) 020 [arXiv:1703.01305] [INSPIRE].
  63. [63]
    F. Ciceri, G. Dibitetto, J.J. Fernández-Melgarejo, A. Guarino and G. Inverso, Double Field Theory at SL(2) angles, JHEP 05 (2017) 028 [arXiv:1612.05230] [INSPIRE].
  64. [64]
    O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP 10 (2017) 086 [arXiv:1707.06693] [INSPIRE].
  65. [65]
    O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP 08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    O. Hohm and B. Zwiebach, L Algebras and Field Theory, Fortsch. Phys. 65 (2017) 1700014 [arXiv:1701.08824] [INSPIRE].
  68. [68]
    M. Cederwall and J. Palmkvist, L algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Guillaume Bossard
    • 1
    Email author
  • Franz Ciceri
    • 2
  • Gianluca Inverso
    • 3
  • Axel Kleinschmidt
    • 2
    • 4
  • Henning Samtleben
    • 5
  1. 1.Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-SaclayPalaiseau cedexFrance
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  3. 3.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom
  4. 4.International Solvay InstitutesBrusselsBelgium
  5. 5.Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de PhysiqueLyonFrance

Personalised recommendations