Advertisement

Cluster adjacency and the four-loop NMHV heptagon

  • James Drummond
  • Jack Foster
  • Ömer GürdoğnEmail author
  • Georgios Papathanasiou
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We exploit the recently described property of cluster adjacency for scattering amplitudes in planar \( \mathcal{N}=4 \) super Yang-Mills theory to construct the symbol of the four-loop NMHV heptagon amplitude. We use a manifestly cluster adjacent ansatz and describe how the parameters of this ansatz are determined using simple physical consistency requirements. We then specialise our answer for the amplitude to the multi-Regge limit, finding agreement with previously available results up to the next-to-leading logarithm, and obtaining new predictions up to (next-to)3-leading-logarithmic accuracy.

Keywords

Scattering Amplitudes Conformal Field Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  2. [2]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix Bootstrap III: Higher Dimensional Amplitudes, arXiv:1708.06765 [INSPIRE].
  4. [4]
    A.L. Guerrieri, J. Penedones and P. Vieira, Bootstrapping QCD: the Lake, the Peninsula and the Kink, arXiv:1810.12849 [INSPIRE].
  5. [5]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
  7. [7]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].
  9. [9]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].
  11. [11]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
  16. [16]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, JHEP 03 (2019) 086 [arXiv:1810.08149] [INSPIRE].Google Scholar
  17. [17]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137 [arXiv:1612.08976] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].
  21. [21]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].
  22. [22]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].
  23. [23]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE].
  24. [24]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
  25. [25]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].
  26. [26]
    L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
  30. [30]
    A. White, The past and future of S matrix theory, hep-ph/0002303 [INSPIRE].
  31. [31]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  32. [32]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].
  33. [33]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  34. [34]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP 08 (2016) 152 [arXiv:1606.08807] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP 06 (2018) 116 [arXiv:1801.10605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].
  40. [40]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces M 0,n(ℝ), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419].
  41. [41]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta 33 (1960) 257.MathSciNetzbMATHGoogle Scholar
  45. [45]
    O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta 33 (1960) 347.MathSciNetzbMATHGoogle Scholar
  46. [46]
    G. Papathanasiou, The Steinmann Cluster Bootstrap for \( \mathcal{N}=4 \) SYM Amplitudes, talk at Amplitudes 2017, https://indico.ph.ed.ac.uk/event/26/contribution/6/material/slides/0.pdf.
  47. [47]
    S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP 07 (2018) 170 [arXiv:1806.01361] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Caron-Huot, L.J. Dixon, F. Dulat, A. McLeod, M. von Hippel and G. Papathanasiou, in preparation.Google Scholar
  49. [49]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
  50. [50]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].
  51. [51]
    L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar N = 4 Super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
  53. [53]
    G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].
  54. [54]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
  56. [56]
    The SpaSM group, SpaSM: a Sparse direct Solver Modulo p, v1.2 ed., (2017), http://github.com/cbouilla/spasm.
  57. [57]
    J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge Limit of the n-Gluon Bubble Ansatz, JHEP 11 (2012) 145 [arXiv:1207.4204] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Bartels, V. Schomerus and M. Sprenger, The Bethe roots of Regge cuts in strongly coupled \( \mathcal{N}=4 \) SYM theory, JHEP 07 (2015) 098 [arXiv:1411.2594] [INSPIRE].
  59. [59]
    L.J. Dixon, J. Drummond, A.J. McLeod, G. Papathanasiou and M. Spradlin, to appear.Google Scholar
  60. [60]
    J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \( \mathcal{N}=4 \) super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].
  61. [61]
    J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the N = 7 scattering amplitude in \( \mathcal{N}=4 \) SYM theory in the multi-Regge kinematics: Conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].
  62. [62]
    J. Bartels, A. Kormilitzin and L.N. Lipatov, Analytic structure of the N = 7 scattering amplitude in N = 4 theory in multi-Regge kinematics: Conformal Regge cut contribution, Phys. Rev. D 91 (2015) 045005 [arXiv:1411.2294] [INSPIRE].
  63. [63]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: The Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].
  64. [64]
    V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N = 4 SUSY, Phys. Lett. B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE].
  65. [65]
    T. Bargheer, G. Papathanasiou and V. Schomerus, The Two-Loop Symbol of all Multi-Regge Regions, JHEP 05 (2016) 012 [arXiv:1512.07620] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/brown/RHpaper5.pdf.
  67. [67]
    F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics & AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.DESY Theory Group, DESY HamburgHamburgGermany

Personalised recommendations