Computing the elliptic genus of higher rank E-strings from genus 0 GW invariants

  • Zhihao Duan
  • Jie Gu
  • Amir-Kian Kashani-PoorEmail author
Open Access
Regular Article - Theoretical Physics


We show that the elliptic genus of the higher rank E-strings can be computed based solely on the genus 0 Gromov-Witten invariants of the corresponding elliptic geometry. To set up our computation, we study the structure of the topological string free energy on elliptically fibered Calabi-Yau manifolds both in the unrefined and the refined case, determining the maximal amount of the modular structure of the partition function that can be salvaged. In the case of fibrations exhibiting only isolated fibral curves, we show that the principal parts of the topological string partition function at given base-wrapping can be computed from the knowledge of the genus 0 Gromov-Witten invariants at this base-wrapping, and the partition function at lower base-wrappings. For the class of geometries leading to the higher rank E-strings, this leads to the result stated in the opening sentence.


Topological Strings F-Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.R. Greene and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    M.-X. Huang, S. Katz and A. Klemm, Topological string on elliptic CY 3-folds and the ring of Jacobi forms, JHEP 10 (2015) 125 [arXiv:1501.04891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Gu, M.-X. Huang, A.-K. Kashani-Poor and A. Klemm, Refined BPS invariants of 6d SCFTs from anomalies and modularity, JHEP 05 (2017) 130 [arXiv:1701.00764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Del Zotto, J. Gu, M.-X. Huang, A.-K. Kashani-Poor, A. Klemm and G. Lockhart, Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs, JHEP 03 (2018) 156 [arXiv:1712.07017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Kim, K. Lee and J. Park, On elliptic genera of 6d string theories, JHEP 10 (2018) 100 [arXiv:1801.01631] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Haghighat, G. Lockhart and C. Vafa, Fusing E-strings to heterotic strings: E + EH, Phys. Rev. D 90 (2014) 126012 [arXiv:1406.0850] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, Elliptic genus of E-strings, JHEP 09 (2017) 098 [arXiv:1411.2324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of minimal 6d SCFTs, Fortsch. Phys. 63 (2015) 294 [arXiv:1412.3152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d string chains, JHEP 02 (2018) 143 [arXiv:1504.04614] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H.-C. Kim, S. Kim and J. Park, 6d strings from new chiral gauge theories, arXiv:1608.03919 [INSPIRE].
  16. [16]
    M. Del Zotto and G. Lockhart, On exceptional instanton strings, JHEP 09 (2017) 081 [arXiv:1609.00310] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Hohenegger, A. Iqbal and S.-J. Rey, Dual little strings from F-theory and flop transitions, JHEP 07 (2017) 112 [arXiv:1610.07916] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams, JHEP 06 (2017) 078 [arXiv:1702.07263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Haghighat, W. Yan and S.-T. Yau, ADE string chains and mirror symmetry, JHEP 01 (2018) 043 [arXiv:1705.05199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S.-S. Kim, M. Taki and F. Yagi, Tao probing the end of the world, PTEP 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  21. [21]
    A. Iqbal and K. Shabbir, Elliptic CY3folds and non-perturbative modular transformation, Eur. Phys. J. C 76 (2016) 148 [arXiv:1510.03332] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Bastian, S. Hohenegger, A. Iqbal and S.-J. Rey, Dual little strings and their partition functions, Phys. Rev. D 97 (2018) 106004 [arXiv:1710.02455] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
  24. [24]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  25. [25]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, Nucl. Phys. Proc. Suppl. 58 (1997) 177 [hep-th/9607139] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M.-X. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid N = 2 theories, Annales Henri Poincaré 14 (2013) 425 [arXiv:1109.5728] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T.M. Chiang, A. Klemm, S.-T. Yau and E. Zaslow, Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999) 495 [hep-th/9903053] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004) 567.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D.S. Park, Anomaly equations and intersection theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Oberdieck and J. Shen, Curve counting on elliptic Calabi-Yau threefolds via derived categories, arXiv:1608.07073 [INSPIRE].
  36. [36]
    S. Hosono, M.H. Saito and A. Takahashi, Holomorphic anomaly equation and BPS state counting of rational elliptic surface, Adv. Theor. Math. Phys. 3 (1999) 177 [hep-th/9901151] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Klemm, J. Manschot and T. Wotschke, Quantum geometry of elliptic Calabi-Yau manifolds, arXiv:1205.1795 [INSPIRE].
  38. [38]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Del Zotto and G. Lockhart, Universal features of BPS strings in six-dimensional SCFTs, JHEP 08 (2018) 173 [arXiv:1804.09694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d N = (1, 0) theories, JHEP 11 (2016) 165 [arXiv:1608.05894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].
  44. [44]
    T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    K. Bringmann, L. Rolen and S. Zwegers, On the Fourier coefficients of negative index meromorphic Jacobi forms, Res. Math. Sci. 3 (2016) 5.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-theory, spinning black holes and multi-string branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Eichler and D. Zagier, The theory of Jacobi forms, Prog. Math. 55, Birkhäuser, Boston, MA, U.S.A. (1985).Google Scholar
  48. [48]
    K. Wirthmüller, Root systems and Jacobi forms, Compos. Math. 82 (1992) 293.MathSciNetzbMATHGoogle Scholar
  49. [49]
    M. Bertola, Jacobi groups, Jacobi forms and their applications, in Isomonodromic deformations and applications in physics, Montréal, QC, Canada (2000), CRM Proc. Lect. Notes 31, Amer. Math. Soc., Providence, RI, U.S.A. (2002), pg. 99.Google Scholar
  50. [50]
    K. Sakai, Topological string amplitudes for the local \( \frac{1}{2} \) K3 surface, PTEP 2017 (2017) 033B09 [arXiv:1111.3967] [INSPIRE].
  51. [51]
    K. Sakai, E n Jacobi forms and Seiberg-Witten curves, arXiv:1706.04619 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.LPTENS, CNRS, PSL University, Sorbonne Universités, UPMCParisFrance

Personalised recommendations