Advertisement

Enhanced n-body annihilation of dark matter and its indirect signatures

  • Mohammad Hossein Namjoo
  • Tracy R. Slatyer
  • Chih-Liang WuEmail author
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

We examine the possible indirect signatures of dark matter annihilation processes with a non-standard scaling with the dark matter density, and in particular the case where more than two dark matter particles participate in the annihilation process. We point out that such processes can be strongly enhanced at low velocities without violating unitarity, similar to Sommerfeld enhancement in the standard case of two-body annihilation, potentially leading to visible signals in indirect searches. We study in detail the impact of such multi-body annihilations on the ionization history of the universe and consequently the cosmic microwave background, and find that unlike in the two-body case, the dominant signal can naturally arise from the end of the cosmic dark ages, after the onset of structure formation. We examine the complementary constraints from the Galactic Center, Galactic halo, and galaxy clusters, and outline the circumstances under which each search would give rise to the strongest constraints. We also show that if there is a population of ultra-compact dense dark matter clumps present in the Milky Way with sufficiently steep density profile, then it might be possible to detect point sources illuminated by multi-body annihilation, even if there is no large low-velocity enhancement. Finally, we provide a case study of a model where 3-body annihilation dominates the freezeout process, and in particular the resonant regime where a large low-velocity enhancement is naturally generated.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a global group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z-portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [arXiv:1507.01590] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett. B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    U.K. Dey, T.N. Maity and T.S. Ray, Light dark matter through assisted annihilation, JCAP 03 (2017) 045 [arXiv:1612.09074] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95 (2017) 115023 [arXiv:1702.04906] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [arXiv:1702.07860] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.M. Cline, H. Liu, T. Slatyer and W. Xue, Enabling forbidden dark matter, Phys. Rev. D 96 (2017) 083521 [arXiv:1702.07716] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.-Y. Ho, T. Toma and K. Tsumura, A radiative neutrino mass model with SIMP dark matter, JHEP 07 (2017) 101 [arXiv:1705.00592] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hochberg, E. Kuflik and H. Murayama, Dark spectroscopy at lepton colliders, Phys. Rev. D 97 (2018) 055030 [arXiv:1706.05008] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Battaglieri et al., U.S. cosmic visions: new ideas in dark matter 2017 — community report, in U.S. cosmic visions: new ideas in dark matter, College Park, MD, U.S.A. 23–25 March 2017 [FERMILAB-CONF-17-282] [arXiv:1707.04591] [INSPIRE].
  19. [19]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  20. [20]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  21. [21]
    M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Tremaine and J.E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  24. [24]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N.P. Mehta et al., General theoretical description of N-body recombination, Phys. Rev. Lett. 103 (2009) 153201 [arXiv:0903.4145].ADSCrossRefGoogle Scholar
  26. [26]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER dark matter, JHEP 08 (2017) 078 [arXiv:1706.05381] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Braaten and H.W. Hammer, Universality in few-body systems with large scattering length, Phys. Rept. 428 (2006) 259 [cond-mat/0410417] [INSPIRE].
  28. [28]
    E. Braaten and H.W. Hammer, Efimov physics in cold atoms, Annals Phys. 322 (2007) 120 [cond-mat/0612123] [INSPIRE].
  29. [29]
    B.S. Rem et al., Lifetime of the Bose gas with resonant interactions, Phys. Rev. Lett. 110 (2013) 163202 [arXiv:1212.5274].ADSCrossRefGoogle Scholar
  30. [30]
    R.J. Fletcher, A.L. Gaunt, N. Navon, R.P. Smith and Z. Hadzibabic, Stability of a unitary Bose gas, Phys. Rev. Lett. 111 (2013) 125303 [arXiv:1307.3193].ADSCrossRefGoogle Scholar
  31. [31]
    K.K. Boddy, J. Kumar, L.E. Strigari and M.-Y. Wang, Sommerfeld-enhanced J -factors for dwarf spheroidal galaxies, Phys. Rev. D 95 (2017) 123008 [arXiv:1702.00408] [INSPIRE].ADSGoogle Scholar
  32. [32]
    W.H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187 (1974) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].
  34. [34]
    D.J. Eisenstein and W. Hu, Baryonic features in the matter transfer function, Astrophys. J. 496 (1998) 605 [astro-ph/9709112] [INSPIRE].
  35. [35]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  36. [36]
    A.M. Green, S. Hofmann and D.J. Schwarz, The first WIMPy halos, JCAP 08 (2005) 003 [astro-ph/0503387] [INSPIRE].
  37. [37]
    M. Viel, G.D. Becker, J.S. Bolton and M.G. Haehnelt, Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data, Phys. Rev. D 88 (2013) 043502 [arXiv:1306.2314] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. López et al., XQ-100: a legacy survey of one hundred 3.5 < z < 4.5 quasars observed with VLT/X-shooter, Astron. Astrophys. 594 (2016) A91 [arXiv:1607.08776].
  39. [39]
    V. Iršič et al., New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [arXiv:1702.01764] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton and G.D. Becker, First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
  42. [42]
    A. Schneider, R.E. Smith and D. Reed, Halo mass function and the free streaming scale, Mon. Not. Roy. Astron. Soc. 433 (2013) 1573 [arXiv:1303.0839] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D.J. Heath, The growth of density perturbations in zero pressure Friedmann-Lemaıtre universes, Mon. Not. Roy. Astron. Soc. 179 (1977) 351.ADSCrossRefGoogle Scholar
  44. [44]
    P.J.E. Peebles, The large-scale structure of the universe, Princeton Univ. Pr., Princeton, NJ, U.S.A. (1980).Google Scholar
  45. [45]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
  46. [46]
    J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters (in Russian), Trudy Astrofiz. Inst. Alma-Ata 5 (1965) 87 [INSPIRE].
  47. [47]
    J.E. Taylor and J. Silk, The clumpiness of cold dark matter: implications for the annihilation signal, Mon. Not. Roy. Astron. Soc. 339 (2003) 505 [astro-ph/0207299] [INSPIRE].
  48. [48]
    G. Tormen, A. Diaferio and D. Syer, Survival of substructure within dark matter haloes, Mon. Not. Roy. Astron. Soc. 299 (1998) 728 [astro-ph/9712222] [INSPIRE].
  49. [49]
    V. Springel et al., The Aquarius project: the subhalos of galactic halos, Mon. Not. Roy. Astron. Soc. 391 (2008) 1685 [arXiv:0809.0898] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Gao et al., The statistics of the subhalo abundance of dark matter haloes, Mon. Not. Roy. Astron. Soc. 410 (2011) 2309 [arXiv:1006.2882] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Klypin, G. Yepes, S. Gottlober, F. Prada and S. Hess, MultiDark simulations: the story of dark matter halo concentrations and density profiles, Mon. Not. Roy. Astron. Soc. 457 (2016) 4340 [arXiv:1411.4001] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L. Gao et al., The redshift dependence of the structure of massive ΛCDM halos, Mon. Not. Roy. Astron. Soc. 387 (2008) 536 [arXiv:0711.0746] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.M. Comerford and P. Natarajan, The observed concentration-mass relation for galaxy clusters, Mon. Not. Roy. Astron. Soc. 379 (2007) 190 [astro-ph/0703126] [INSPIRE].
  54. [54]
    A.R. Duffy, J. Schaye, S.T. Kay and C. Dalla Vecchia, Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology, Mon. Not. Roy. Astron. Soc. 390 (2008) L64 [Erratum ibid. 415 (2011) L85] [arXiv:0804.2486] [INSPIRE].
  55. [55]
    M.A. Sánchez-Conde and F. Prada, The flattening of the concentration-mass relation towards low halo masses and its implications for the annihilation signal boost, Mon. Not. Roy. Astron. Soc. 442 (2014) 2271 [arXiv:1312.1729] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K.C.Y. Ng et al., Resolving small-scale dark matter structures using multisource indirect detection, Phys. Rev. D 89 (2014) 083001 [arXiv:1310.1915] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K.J. Mack, Known unknowns of dark matter annihilation over cosmic time, Mon. Not. Roy. Astron. Soc. 439 (2014) 2728 [arXiv:1309.7783] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Prada, A.A. Klypin, A.J. Cuesta, J.E. Betancort-Rijo and J. Primack, Halo concentrations in the standard ΛCDM cosmology, Mon. Not. Roy. Astron. Soc. 423 (2012) 3018 [arXiv:1104.5130] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current dark matter annihilation constraints from CMB and low-redshift data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  60. [60]
    T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the Cosmic Microwave Background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  62. [62]
    J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: overview, arXiv:1104.2932 [INSPIRE].
  63. [63]
    T.R. Slatyer, Energy injection and absorption in the cosmic dark ages, Phys. Rev. D 87 (2013) 123513 [arXiv:1211.0283] [INSPIRE].ADSGoogle Scholar
  64. [64]
    B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative constraints on early cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001 [arXiv:1210.7183] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Diamanti, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A.C. Vincent, Constraining dark matter late-time energy injection: decays and P-wave annihilations, JCAP 02 (2014) 017 [arXiv:1308.2578] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    H. Liu, T.R. Slatyer and J. Zavala, Contributions to cosmic reionization from dark matter annihilation and decay, Phys. Rev. D 94 (2016) 063507 [arXiv:1604.02457] [INSPIRE].ADSGoogle Scholar
  67. [67]
    Planck collaboration, Planck intermediate results. XLVII. Planck constraints on reionization history, Astron. Astrophys. 596 (2016) A108 [arXiv:1605.03507] [INSPIRE].
  68. [68]
    J.S. Bolton, G.D. Becker, J.S.B. Wyithe, M.G. Haehnelt and W.L.W. Sargent, A first direct measurement of the intergalactic medium temperature around a quasar at z = 6, Mon. Not. Roy. Astron. Soc. 406 (2010) 612 [arXiv:1001.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G.D. Becker, J.S. Bolton, M.G. Haehnelt and W.L.W. Sargent, Detection of extended He II reionization in the temperature evolution of the intergalactic medium, Mon. Not. Roy. Astron. Soc. 410 (2011) 1096 [arXiv:1008.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.S. Bolton, G.D. Becker, S. Raskutti, J.S.B. Wyithe, M.G. Haehnelt and W.L.W. Sargent, Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He-II reionisation at z ∼ 6, arXiv:1110.0539 [INSPIRE].
  71. [71]
    M. Valdès, A. Ferrara, M. Mapelli and E. Ripamonti, Constraining DM through 21 cm observations, Mon. Not. Roy. Astron. Soc. 377 (2007) 245 [astro-ph/0701301] [INSPIRE].
  72. [72]
    M. Valdès, C. Evoli, A. Mesinger, A. Ferrara and N. Yoshida, The nature of dark matter from the global high redshift HI 21 cm signal, Mon. Not. Roy. Astron. Soc. 429 (2013) 1705 [arXiv:1209.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H. Liu and T.R. Slatyer, Implications of a 21 cm signal for dark matter annihilation and decay, Phys. Rev. D 98 (2018) 023501 [arXiv:1803.09739] [INSPIRE].ADSGoogle Scholar
  75. [75]
    D.P. Finkbeiner, S. Galli, T. Lin and T.R. Slatyer, Searching for dark matter in the CMB: a compact parameterization of energy injection from new physics, Phys. Rev. D 85 (2012) 043522 [arXiv:1109.6322] [INSPIRE].ADSGoogle Scholar
  76. [76]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on dark matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Fermi-LAT and DES collaborations, Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  78. [78]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    L.J. Chang, M. Lisanti and S. Mishra-Sharma, Search for dark matter annihilation in the Milky Way halo, Phys. Rev. D 98 (2018) 123004 [arXiv:1804.04132] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Lisanti, S. Mishra-Sharma, N.L. Rodd and B.R. Safdi, Search for dark matter annihilation in galaxy groups, Phys. Rev. Lett. 120 (2018) 101101 [arXiv:1708.09385] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M.C. Weisskopf, B. Brinkman, C. Canizares, G. Garmire, S. Murray and L.P. Van Speybroeck, An overview of the performance and scientific results from the Chandra X-ray Observatory (CXO), Publ. Astron. Soc. Pac. 114 (2002) 1 [astro-ph/0110308] [INSPIRE].
  82. [82]
    K. Mitsuda et al., The X-ray observatory Suzaku, Publ. Astron. Soc. Jap. 59 (2007) S1 [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    F. Jansen et al., XMM-Newton observatory. I. The spacecraft and operations, Astron. Astrophys. 365 (2001) L1 [INSPIRE].
  84. [84]
    F.A. Harrison et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission, Astrophys. J. 770 (2013) 103 [arXiv:1301.7307] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Perez, K.C.Y. Ng, J.F. Beacom, C. Hersh, S. Horiuchi and R. Krivonos, Almost closing the νMSM sterile neutrino dark matter window with νSTAR, Phys. Rev. D 95 (2017) 123002 [arXiv:1609.00667] [INSPIRE].ADSGoogle Scholar
  86. [86]
    D.E. Gruber, J.L. Matteson, L.E. Peterson and G.V. Jung, The spectrum of diffuse cosmic hard X-rays measured with HEAO-1, Astrophys. J. 520 (1999) 124 [astro-ph/9903492] [INSPIRE].
  87. [87]
    F.E. Marshall et al., The diffuse X-ray background spectrum from 3 to 50 keV, Astrophys. J. 235 (1980) 4.ADSCrossRefGoogle Scholar
  88. [88]
    L. Bouchet et al., INTEGRAL SPI all-sky view in soft gamma rays: study of point source and galactic diffuse emissions, Astrophys. J. 679 (2008) 1315 [arXiv:0801.2086] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S.C. Kappadath, Measurement of the cosmic diffuse gamma-ray spectrum from 800 keV to 30 MeV, Ph.D. thesis, University of New Hampshire, Durham, NH, U.S.A. (1998).Google Scholar
  90. [90]
    A.W. Strong, I.V. Moskalenko and O. Reimer, Diffuse galactic continuum gamma rays. A model compatible with EGRET data and cosmic-ray measurements, Astrophys. J. 613 (2004) 962 [astro-ph/0406254] [INSPIRE].
  91. [91]
    T. Tamura, R. Iizuka, Y. Maeda, K. Mitsuda and N.Y. Yamasaki, An X-ray spectroscopic search for dark matter in the Perseus cluster with Suzaku, Publ. Astron. Soc. Jap. 67 (2015) 23 [arXiv:1412.1869] [INSPIRE].ADSGoogle Scholar
  92. [92]
    E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M.A. Sánchez-Conde, M. Cannoni, F. Zandanel, M.E. Gómez and F. Prada, Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?, JCAP 12 (2011) 011 [arXiv:1104.3530] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    A.V. Kravtsov et al., The dark side of the halo occupation distribution, Astrophys. J. 609 (2004) 35 [astro-ph/0308519] [INSPIRE].
  96. [96]
    C. Giocoli, G. Tormen, R.K. Sheth and F.C. van den Bosch, The substructure hierarchy in dark matter haloes, Mon. Not. Roy. Astron. Soc. 404 (2010) 502 [arXiv:0911.0436] [INSPIRE].ADSGoogle Scholar
  97. [97]
    F.C. van den Bosch and G. Ogiya, Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities and artificial disruption, Mon. Not. Roy. Astron. Soc. 475 (2018) 4066 [arXiv:1801.05427] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    T. Bringmann, P. Scott and Y. Akrami, Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos, Phys. Rev. D 85 (2012) 125027 [arXiv:1110.2484] [INSPIRE].ADSGoogle Scholar
  99. [99]
    J.A. Fillmore and P. Goldreich, Self-similiar gravitational collapse in an expanding universe, Astrophys. J. 281 (1984) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    E. Bertschinger, Self-similar secondary infall and accretion in an Einstein-de Sitter universe, Astrophys. J. Suppl. 58 (1985) 39 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Vogelsberger, S.D.M. White, R. Mohayaee and V. Springel, Caustics in growing cold dark matter haloes, Mon. Not. Roy. Astron. Soc. 400 (2009) 2174 [arXiv:0906.4341] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A.D. Ludlow et al., Secondary infall and the pseudo-phase-space density profiles of cold dark matter halos, Mon. Not. Roy. Astron. Soc. 406 (2010) 137 [arXiv:1001.2310] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    K.J. Mack, J.P. Ostriker and M. Ricotti, Growth of structure seeded by primordial black holes, Astrophys. J. 665 (2007) 1277 [astro-ph/0608642] [INSPIRE].
  104. [104]
    M. Ricotti, J.P. Ostriker and K.J. Mack, Effect of primordial black holes on the Cosmic Microwave Background and cosmological parameter estimates, Astrophys. J. 680 (2008) 829 [arXiv:0709.0524] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    M. Ricotti, Bondi accretion in the early universe, Astrophys. J. 662 (2007) 53 [arXiv:0706.0864] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    M. Gosenca, J. Adamek, C.T. Byrnes and S. Hotchkiss, 3D simulations with boosted primordial power spectra and ultracompact minihalos, Phys. Rev. D 96 (2017) 123519 [arXiv:1710.02055] [INSPIRE].ADSGoogle Scholar
  107. [107]
    M.S. Delos, A.L. Erickcek, A.P. Bailey and M.A. Alvarez, Are ultracompact minihalos really ultracompact?, Phys. Rev. D 97 (2018) 041303 [arXiv:1712.05421] [INSPIRE].ADSGoogle Scholar
  108. [108]
    M. Ricotti and A. Gould, A new probe of dark matter and high-energy universe using microlensing, Astrophys. J. 707 (2009) 979 [arXiv:0908.0735] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    G. Battaglia et al., The radial velocity dispersion profile of the galactic halo: constraining the density profile of the dark halo of the Milky Way, Mon. Not. Roy. Astron. Soc. 364 (2005) 433 [Erratum ibid. 370 (2006) 1055] [astro-ph/0506102] [INSPIRE].
  110. [110]
    F. Nesti and P. Salucci, The dark matter halo of the Milky Way, AD 2013, JCAP 07 (2013) 016 [arXiv:1304.5127] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    M. Elvis et al., The Chandra COSMOS survey, I: overview and point source catalog, Astrophys. J. Suppl. 184 (2009) 158 [arXiv:0903.2062] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    Fermi-LAT collaboration, Fermipy: an open-source Python package for analysis of Fermi-LAT data, PoS(ICRC2017)824 (2018) [arXiv:1707.09551] [INSPIRE].
  113. [113]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  114. [114]
    D. Hooper, N. Weiner and W. Xue, Dark forces and light dark matter, Phys. Rev. D 86 (2012) 056009 [arXiv:1206.2929] [INSPIRE].ADSGoogle Scholar
  115. [115]
    D. Zhang, Impact of primordial ultracompact minihaloes on the intergalactic medium and first structure formation, Mon. Not. Roy. Astron. Soc. 418 (2011) 1850 [arXiv:1011.1935] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages II. Ionization, heating and photon production from arbitrary energy injections, Phys. Rev. D 93 (2016) 023521 [arXiv:1506.03812] [INSPIRE].
  117. [117]
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].ADSGoogle Scholar
  119. [119]
    K. Melnikov and V.G. Serbo, Processes with the T channel singularity in the physical region: finite beam sizes make cross-sections finite, Nucl. Phys. B 483 (1997) 67 [hep-ph/9601290] [INSPIRE].
  120. [120]
    C. Dams and R. Kleiss, Singular cross-sections in muon colliders, Eur. Phys. J. C 29 (2003) 11 [hep-ph/0212301] [INSPIRE].
  121. [121]
    K. Blum, R. Sato and T.R. Slatyer, Self-consistent calculation of the Sommerfeld enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    C.H. Greene, B.D. Esry and H. Suno, A revised formula for 3-body recombination that cannot exceed the unitarity limit, Nucl. Phys. A 737 (2004) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP 11 (2018) 084 [arXiv:1806.00609] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].ADSGoogle Scholar
  125. [125]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    D. Wittman, N. Golovich and W.A. Dawson, The mismeasure of mergers: revised limits on self-interacting dark matter in merging galaxy clusters, Astrophys. J. 869 (2018) 104 [arXiv:1701.05877] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  128. [128]
    K. Bondarenko, A. Boyarsky, T. Bringmann and A. Sokolenko, Constraining self-interacting dark matter with scaling laws of observed halo surface densities, JCAP 04 (2018) 049 [arXiv:1712.06602] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    M. Kaplinghat, R.E. Keeley, T. Linden and H.-B. Yu, Tying dark matter to baryons with self-interactions, Phys. Rev. Lett. 113 (2014) 021302 [arXiv:1311.6524] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    J. Pollack, D.N. Spergel and P.J. Steinhardt, Supermassive black holes from ultra-strongly self-interacting dark matter, Astrophys. J. 804 (2015) 131 [arXiv:1501.00017] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations